Loading…
Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter
In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized s...
Saved in:
Published in: | IEEE transactions on signal processing 2012-01, Vol.60 (1), p.514-518 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3 |
container_end_page | 518 |
container_issue | 1 |
container_start_page | 514 |
container_title | IEEE transactions on signal processing |
container_volume | 60 |
creator | Ginolhac, G. Forster, P. Pascal, F. Ovarlez, J. |
description | In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach. |
doi_str_mv | 10.1109/TSP.2011.2169063 |
format | article |
fullrecord | <record><control><sourceid>hal_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6026259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026259</ieee_id><sourcerecordid>oai_HAL_hal_00780733v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</originalsourceid><addsrcrecordid>eNo9kE1vEzEQhlcIpJbCvRIXX3rgsMEfsdc-hrQllQJUJBXcVhN7TFw265W9DbRX_jgbbclpRjPvMyM9RXHO6IQxaj6sV7cTThmbcKYMVeJFccrMlJV0WqmXQ0-lKKWufpwUr3O-p5RNp0adFn8vMYU99CG2JHrSb5F8DJD_919i2kETntCRFey6Bsk87iEFaC2Sz9Cn8IeElgBZYI8p_sQW40MesJCRfA_9lsy6rgl2fNBHsoy_yTdof5HVenZLrkMzYG-KVx6ajG-f61lxd321ni_K5ddPN_PZsrSCV31pNeeouTVco_bUO-WcUxuhvdabSmo0aCwHJY31xjlh3AYkc8KDN-jRi7Pi_Xh3C03dpbCD9FhHCPVitqwPM0orTSsh9mzI0jFrU8w5oT8CjNYH4fUgvD4Ir5-FD8jFiHSQLTQ-DZJCPnJcSsYlP-TejbmAiMe1olxxacQ_drqKvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</creator><creatorcontrib>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</creatorcontrib><description>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2169063</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bias study ; Clutter ; Computer Science ; consistency ; Context ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Engineering Sciences ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; low rank clutter ; normalized sample covariance matrix ; orthogonal projector ; Radar ; Signal and communications theory ; Signal and Image processing ; Signal, noise ; SIRV ; space time adaptive processing (STAP) ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2012-01, Vol.60 (1), p.514-518</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</citedby><cites>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</cites><orcidid>0009-0002-2679-8316 ; 0000-0003-0196-6395 ; 0000-0001-8056-4196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00780733$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginolhac, G.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><creatorcontrib>Pascal, F.</creatorcontrib><creatorcontrib>Ovarlez, J.</creatorcontrib><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</description><subject>Applied sciences</subject><subject>Bias study</subject><subject>Clutter</subject><subject>Computer Science</subject><subject>consistency</subject><subject>Context</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>low rank clutter</subject><subject>normalized sample covariance matrix</subject><subject>orthogonal projector</subject><subject>Radar</subject><subject>Signal and communications theory</subject><subject>Signal and Image processing</subject><subject>Signal, noise</subject><subject>SIRV</subject><subject>space time adaptive processing (STAP)</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1vEzEQhlcIpJbCvRIXX3rgsMEfsdc-hrQllQJUJBXcVhN7TFw265W9DbRX_jgbbclpRjPvMyM9RXHO6IQxaj6sV7cTThmbcKYMVeJFccrMlJV0WqmXQ0-lKKWufpwUr3O-p5RNp0adFn8vMYU99CG2JHrSb5F8DJD_919i2kETntCRFey6Bsk87iEFaC2Sz9Cn8IeElgBZYI8p_sQW40MesJCRfA_9lsy6rgl2fNBHsoy_yTdof5HVenZLrkMzYG-KVx6ajG-f61lxd321ni_K5ddPN_PZsrSCV31pNeeouTVco_bUO-WcUxuhvdabSmo0aCwHJY31xjlh3AYkc8KDN-jRi7Pi_Xh3C03dpbCD9FhHCPVitqwPM0orTSsh9mzI0jFrU8w5oT8CjNYH4fUgvD4Ir5-FD8jFiHSQLTQ-DZJCPnJcSsYlP-TejbmAiMe1olxxacQ_drqKvg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ginolhac, G.</creator><creator>Forster, P.</creator><creator>Pascal, F.</creator><creator>Ovarlez, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0002-2679-8316</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-8056-4196</orcidid></search><sort><creationdate>201201</creationdate><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><author>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bias study</topic><topic>Clutter</topic><topic>Computer Science</topic><topic>consistency</topic><topic>Context</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>low rank clutter</topic><topic>normalized sample covariance matrix</topic><topic>orthogonal projector</topic><topic>Radar</topic><topic>Signal and communications theory</topic><topic>Signal and Image processing</topic><topic>Signal, noise</topic><topic>SIRV</topic><topic>space time adaptive processing (STAP)</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginolhac, G.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><creatorcontrib>Pascal, F.</creatorcontrib><creatorcontrib>Ovarlez, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginolhac, G.</au><au>Forster, P.</au><au>Pascal, F.</au><au>Ovarlez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-01</date><risdate>2012</risdate><volume>60</volume><issue>1</issue><spage>514</spage><epage>518</epage><pages>514-518</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2169063</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0002-2679-8316</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-8056-4196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2012-01, Vol.60 (1), p.514-518 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_6026259 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Bias study Clutter Computer Science consistency Context Covariance matrix Detection, estimation, filtering, equalization, prediction Eigenvalues and eigenfunctions Engineering Sciences Exact sciences and technology Gaussian noise Information, signal and communications theory low rank clutter normalized sample covariance matrix orthogonal projector Radar Signal and communications theory Signal and Image processing Signal, noise SIRV space time adaptive processing (STAP) Telecommunications and information theory |
title | Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20Bias%20of%20the%20Normalized%20Sample%20Covariance%20Matrix%20in%20a%20Heterogeneous%20Noise%20With%20Application%20to%20Low%20Rank%20STAP%20Filter&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ginolhac,%20G.&rft.date=2012-01&rft.volume=60&rft.issue=1&rft.spage=514&rft.epage=518&rft.pages=514-518&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2169063&rft_dat=%3Chal_ieee_%3Eoai_HAL_hal_00780733v1%3C/hal_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026259&rfr_iscdi=true |