Loading…

Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter

In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2012-01, Vol.60 (1), p.514-518
Main Authors: Ginolhac, G., Forster, P., Pascal, F., Ovarlez, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3
cites cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3
container_end_page 518
container_issue 1
container_start_page 514
container_title IEEE transactions on signal processing
container_volume 60
creator Ginolhac, G.
Forster, P.
Pascal, F.
Ovarlez, J.
description In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.
doi_str_mv 10.1109/TSP.2011.2169063
format article
fullrecord <record><control><sourceid>hal_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6026259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026259</ieee_id><sourcerecordid>oai_HAL_hal_00780733v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</originalsourceid><addsrcrecordid>eNo9kE1vEzEQhlcIpJbCvRIXX3rgsMEfsdc-hrQllQJUJBXcVhN7TFw265W9DbRX_jgbbclpRjPvMyM9RXHO6IQxaj6sV7cTThmbcKYMVeJFccrMlJV0WqmXQ0-lKKWufpwUr3O-p5RNp0adFn8vMYU99CG2JHrSb5F8DJD_919i2kETntCRFey6Bsk87iEFaC2Sz9Cn8IeElgBZYI8p_sQW40MesJCRfA_9lsy6rgl2fNBHsoy_yTdof5HVenZLrkMzYG-KVx6ajG-f61lxd321ni_K5ddPN_PZsrSCV31pNeeouTVco_bUO-WcUxuhvdabSmo0aCwHJY31xjlh3AYkc8KDN-jRi7Pi_Xh3C03dpbCD9FhHCPVitqwPM0orTSsh9mzI0jFrU8w5oT8CjNYH4fUgvD4Ir5-FD8jFiHSQLTQ-DZJCPnJcSsYlP-TejbmAiMe1olxxacQ_drqKvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</creator><creatorcontrib>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</creatorcontrib><description>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2169063</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bias study ; Clutter ; Computer Science ; consistency ; Context ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Eigenvalues and eigenfunctions ; Engineering Sciences ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; low rank clutter ; normalized sample covariance matrix ; orthogonal projector ; Radar ; Signal and communications theory ; Signal and Image processing ; Signal, noise ; SIRV ; space time adaptive processing (STAP) ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2012-01, Vol.60 (1), p.514-518</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</citedby><cites>FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</cites><orcidid>0009-0002-2679-8316 ; 0000-0003-0196-6395 ; 0000-0001-8056-4196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25512523$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00780733$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ginolhac, G.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><creatorcontrib>Pascal, F.</creatorcontrib><creatorcontrib>Ovarlez, J.</creatorcontrib><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</description><subject>Applied sciences</subject><subject>Bias study</subject><subject>Clutter</subject><subject>Computer Science</subject><subject>consistency</subject><subject>Context</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>low rank clutter</subject><subject>normalized sample covariance matrix</subject><subject>orthogonal projector</subject><subject>Radar</subject><subject>Signal and communications theory</subject><subject>Signal and Image processing</subject><subject>Signal, noise</subject><subject>SIRV</subject><subject>space time adaptive processing (STAP)</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1vEzEQhlcIpJbCvRIXX3rgsMEfsdc-hrQllQJUJBXcVhN7TFw265W9DbRX_jgbbclpRjPvMyM9RXHO6IQxaj6sV7cTThmbcKYMVeJFccrMlJV0WqmXQ0-lKKWufpwUr3O-p5RNp0adFn8vMYU99CG2JHrSb5F8DJD_919i2kETntCRFey6Bsk87iEFaC2Sz9Cn8IeElgBZYI8p_sQW40MesJCRfA_9lsy6rgl2fNBHsoy_yTdof5HVenZLrkMzYG-KVx6ajG-f61lxd321ni_K5ddPN_PZsrSCV31pNeeouTVco_bUO-WcUxuhvdabSmo0aCwHJY31xjlh3AYkc8KDN-jRi7Pi_Xh3C03dpbCD9FhHCPVitqwPM0orTSsh9mzI0jFrU8w5oT8CjNYH4fUgvD4Ir5-FD8jFiHSQLTQ-DZJCPnJcSsYlP-TejbmAiMe1olxxacQ_drqKvg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Ginolhac, G.</creator><creator>Forster, P.</creator><creator>Pascal, F.</creator><creator>Ovarlez, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0002-2679-8316</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-8056-4196</orcidid></search><sort><creationdate>201201</creationdate><title>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</title><author>Ginolhac, G. ; Forster, P. ; Pascal, F. ; Ovarlez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Bias study</topic><topic>Clutter</topic><topic>Computer Science</topic><topic>consistency</topic><topic>Context</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>low rank clutter</topic><topic>normalized sample covariance matrix</topic><topic>orthogonal projector</topic><topic>Radar</topic><topic>Signal and communications theory</topic><topic>Signal and Image processing</topic><topic>Signal, noise</topic><topic>SIRV</topic><topic>space time adaptive processing (STAP)</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginolhac, G.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><creatorcontrib>Pascal, F.</creatorcontrib><creatorcontrib>Ovarlez, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginolhac, G.</au><au>Forster, P.</au><au>Pascal, F.</au><au>Ovarlez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-01</date><risdate>2012</risdate><volume>60</volume><issue>1</issue><spage>514</spage><epage>518</epage><pages>514-518</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In a previous work, we have developed a low-rank (LR) spatio-temporal adaptive processing (STAP) filter when the disturbance is modeled as the sum of a low-rank spherically invariant random vector (SIRV) clutter and a zero-mean white Gaussian noise. This LR-STAP filter is built from the normalized sample covariance matrix (NSCM) and exhibits good robustness properties to secondary data contamination by target components. In this correspondence, we derive the bias of the NSCM with this noise model. We show that the eigenvectors estimated from the NSCM are unbiased. The new expressions of the expectation of NSCM eigenvalues are also given. From these results, we also show that the estimate of the clutter subspace projector based on the NSCM used in our LR-STAP is a consistent estimate of the true one. Results on numerical data validates the theoretical approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2169063</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0002-2679-8316</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><orcidid>https://orcid.org/0000-0001-8056-4196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2012-01, Vol.60 (1), p.514-518
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_6026259
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Bias study
Clutter
Computer Science
consistency
Context
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Eigenvalues and eigenfunctions
Engineering Sciences
Exact sciences and technology
Gaussian noise
Information, signal and communications theory
low rank clutter
normalized sample covariance matrix
orthogonal projector
Radar
Signal and communications theory
Signal and Image processing
Signal, noise
SIRV
space time adaptive processing (STAP)
Telecommunications and information theory
title Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20the%20Bias%20of%20the%20Normalized%20Sample%20Covariance%20Matrix%20in%20a%20Heterogeneous%20Noise%20With%20Application%20to%20Low%20Rank%20STAP%20Filter&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ginolhac,%20G.&rft.date=2012-01&rft.volume=60&rft.issue=1&rft.spage=514&rft.epage=518&rft.pages=514-518&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2169063&rft_dat=%3Chal_ieee_%3Eoai_HAL_hal_00780733v1%3C/hal_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c327t-c822e82c928e8f0fd6ddd6b38f88b758e9e9c2a659cf9dd39dba51d3faf9efef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026259&rfr_iscdi=true