Loading…
A performance-power evaluation of FinFET flip-flops under process variations
In this paper we present a performance-power study of three flip-flops using FinFET technology. First we tested the original designs with Monte Carlo variations, and then biased the back gate of the FinFETs. We report the following flip-flop delays: setup, clock to Q, and hold times. Setup and clock...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we present a performance-power study of three flip-flops using FinFET technology. First we tested the original designs with Monte Carlo variations, and then biased the back gate of the FinFETs. We report the following flip-flop delays: setup, clock to Q, and hold times. Setup and clock to Q times (called register delay) are in the pipeline stage critical path. Our study shows that the Low Delay (LDFF) flip-flop has the shortest register delay of 5.7ps. The flip-flop with the lowest power consumption is LPFF with 17.4 μW. Our simulations were performed using the University of Florida UFDG: Double-Gate MOSFET Model through the interface of Spice3f5 and Ngspice (ngspice3.ufdg-3.7) and a 32nm technology. |
---|---|
ISSN: | 1548-3746 1558-3899 |
DOI: | 10.1109/MWSCAS.2011.6026271 |