Loading…
Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery
A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear co...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2011-11, Vol.49 (11), p.4263-4281 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403 |
container_end_page | 4281 |
container_issue | 11 |
container_start_page | 4263 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 49 |
creator | Castrodad, A. Zhengming Xing Greer, J. B. Bosch, E. Carin, L. Sapiro, G. |
description | A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery. |
doi_str_mv | 10.1109/TGRS.2011.2163822 |
format | article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6026943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026943</ieee_id><sourcerecordid>10_1109_TGRS_2011_2163822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kAdaZk6ZZeylTt0GHsM3rkiYno7K1IanC3t7UDeHAgcP3_3A-Qh6BTQFY8bxbbLZTzgCmHGSac35FRpBlecKkENdkxKCQCc8LfkvuQvhiDEQGsxHpS1S-bdo9fW2C9s2xaVXf_CDdOuUD0g06jwHbPl67NlDbebruDB5iZEK33bfXkcUI_wETqlpD18q5obKzdHly6IND3Xt1oKuj2qM_3ZMbqw4BHy57TD7f33bzZVJ-LFbzlzLRaQp9glpaY5jRqsh1bY1FLXSam8xqYyWK2tQzMzOSg1FWWyNqVSjDFEAtWJx0TODcq30Xgkdbufih8qcKWDVoqwZt1aCtumiLmadzpkHEf14yLguRpr-ogm5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><source>IEEE Xplore (Online service)</source><creator>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</creator><creatorcontrib>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</creatorcontrib><description>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2011.2163822</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Dictionaries ; Encoding ; Hyperspectral imaging ; Image reconstruction ; Materials ; scene classification ; sparse modeling ; spectral unmixing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2011-11, Vol.49 (11), p.4263-4281</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</citedby><cites>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Castrodad, A.</creatorcontrib><creatorcontrib>Zhengming Xing</creatorcontrib><creatorcontrib>Greer, J. B.</creatorcontrib><creatorcontrib>Bosch, E.</creatorcontrib><creatorcontrib>Carin, L.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</description><subject>Data models</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Materials</subject><subject>scene classification</subject><subject>sparse modeling</subject><subject>spectral unmixing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcPIN7kAdaZk6ZZeylTt0GHsM3rkiYno7K1IanC3t7UDeHAgcP3_3A-Qh6BTQFY8bxbbLZTzgCmHGSac35FRpBlecKkENdkxKCQCc8LfkvuQvhiDEQGsxHpS1S-bdo9fW2C9s2xaVXf_CDdOuUD0g06jwHbPl67NlDbebruDB5iZEK33bfXkcUI_wETqlpD18q5obKzdHly6IND3Xt1oKuj2qM_3ZMbqw4BHy57TD7f33bzZVJ-LFbzlzLRaQp9glpaY5jRqsh1bY1FLXSam8xqYyWK2tQzMzOSg1FWWyNqVSjDFEAtWJx0TODcq30Xgkdbufih8qcKWDVoqwZt1aCtumiLmadzpkHEf14yLguRpr-ogm5z</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Castrodad, A.</creator><creator>Zhengming Xing</creator><creator>Greer, J. B.</creator><creator>Bosch, E.</creator><creator>Carin, L.</creator><creator>Sapiro, G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201111</creationdate><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><author>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data models</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Materials</topic><topic>scene classification</topic><topic>sparse modeling</topic><topic>spectral unmixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castrodad, A.</creatorcontrib><creatorcontrib>Zhengming Xing</creatorcontrib><creatorcontrib>Greer, J. B.</creatorcontrib><creatorcontrib>Bosch, E.</creatorcontrib><creatorcontrib>Carin, L.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castrodad, A.</au><au>Zhengming Xing</au><au>Greer, J. B.</au><au>Bosch, E.</au><au>Carin, L.</au><au>Sapiro, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2011-11</date><risdate>2011</risdate><volume>49</volume><issue>11</issue><spage>4263</spage><epage>4281</epage><pages>4263-4281</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2011.2163822</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2011-11, Vol.49 (11), p.4263-4281 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_6026943 |
source | IEEE Xplore (Online service) |
subjects | Data models Dictionaries Encoding Hyperspectral imaging Image reconstruction Materials scene classification sparse modeling spectral unmixing |
title | Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Discriminative%20Sparse%20Representations%20for%20Modeling,%20Source%20Separation,%20and%20Mapping%20of%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Castrodad,%20A.&rft.date=2011-11&rft.volume=49&rft.issue=11&rft.spage=4263&rft.epage=4281&rft.pages=4263-4281&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2011.2163822&rft_dat=%3Ccrossref_ieee_%3E10_1109_TGRS_2011_2163822%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026943&rfr_iscdi=true |