Loading…

Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery

A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2011-11, Vol.49 (11), p.4263-4281
Main Authors: Castrodad, A., Zhengming Xing, Greer, J. B., Bosch, E., Carin, L., Sapiro, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403
cites cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403
container_end_page 4281
container_issue 11
container_start_page 4263
container_title IEEE transactions on geoscience and remote sensing
container_volume 49
creator Castrodad, A.
Zhengming Xing
Greer, J. B.
Bosch, E.
Carin, L.
Sapiro, G.
description A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.
doi_str_mv 10.1109/TGRS.2011.2163822
format article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6026943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026943</ieee_id><sourcerecordid>10_1109_TGRS_2011_2163822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN7kAdaZk6ZZeylTt0GHsM3rkiYno7K1IanC3t7UDeHAgcP3_3A-Qh6BTQFY8bxbbLZTzgCmHGSac35FRpBlecKkENdkxKCQCc8LfkvuQvhiDEQGsxHpS1S-bdo9fW2C9s2xaVXf_CDdOuUD0g06jwHbPl67NlDbebruDB5iZEK33bfXkcUI_wETqlpD18q5obKzdHly6IND3Xt1oKuj2qM_3ZMbqw4BHy57TD7f33bzZVJ-LFbzlzLRaQp9glpaY5jRqsh1bY1FLXSam8xqYyWK2tQzMzOSg1FWWyNqVSjDFEAtWJx0TODcq30Xgkdbufih8qcKWDVoqwZt1aCtumiLmadzpkHEf14yLguRpr-ogm5z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><source>IEEE Xplore (Online service)</source><creator>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</creator><creatorcontrib>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</creatorcontrib><description>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2011.2163822</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data models ; Dictionaries ; Encoding ; Hyperspectral imaging ; Image reconstruction ; Materials ; scene classification ; sparse modeling ; spectral unmixing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2011-11, Vol.49 (11), p.4263-4281</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</citedby><cites>FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Castrodad, A.</creatorcontrib><creatorcontrib>Zhengming Xing</creatorcontrib><creatorcontrib>Greer, J. B.</creatorcontrib><creatorcontrib>Bosch, E.</creatorcontrib><creatorcontrib>Carin, L.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</description><subject>Data models</subject><subject>Dictionaries</subject><subject>Encoding</subject><subject>Hyperspectral imaging</subject><subject>Image reconstruction</subject><subject>Materials</subject><subject>scene classification</subject><subject>sparse modeling</subject><subject>spectral unmixing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKcPIN7kAdaZk6ZZeylTt0GHsM3rkiYno7K1IanC3t7UDeHAgcP3_3A-Qh6BTQFY8bxbbLZTzgCmHGSac35FRpBlecKkENdkxKCQCc8LfkvuQvhiDEQGsxHpS1S-bdo9fW2C9s2xaVXf_CDdOuUD0g06jwHbPl67NlDbebruDB5iZEK33bfXkcUI_wETqlpD18q5obKzdHly6IND3Xt1oKuj2qM_3ZMbqw4BHy57TD7f33bzZVJ-LFbzlzLRaQp9glpaY5jRqsh1bY1FLXSam8xqYyWK2tQzMzOSg1FWWyNqVSjDFEAtWJx0TODcq30Xgkdbufih8qcKWDVoqwZt1aCtumiLmadzpkHEf14yLguRpr-ogm5z</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Castrodad, A.</creator><creator>Zhengming Xing</creator><creator>Greer, J. B.</creator><creator>Bosch, E.</creator><creator>Carin, L.</creator><creator>Sapiro, G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201111</creationdate><title>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</title><author>Castrodad, A. ; Zhengming Xing ; Greer, J. B. ; Bosch, E. ; Carin, L. ; Sapiro, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Data models</topic><topic>Dictionaries</topic><topic>Encoding</topic><topic>Hyperspectral imaging</topic><topic>Image reconstruction</topic><topic>Materials</topic><topic>scene classification</topic><topic>sparse modeling</topic><topic>spectral unmixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castrodad, A.</creatorcontrib><creatorcontrib>Zhengming Xing</creatorcontrib><creatorcontrib>Greer, J. B.</creatorcontrib><creatorcontrib>Bosch, E.</creatorcontrib><creatorcontrib>Carin, L.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castrodad, A.</au><au>Zhengming Xing</au><au>Greer, J. B.</au><au>Bosch, E.</au><au>Carin, L.</au><au>Sapiro, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2011-11</date><risdate>2011</risdate><volume>49</volume><issue>11</issue><spage>4263</spage><epage>4281</epage><pages>4263-4281</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A method is presented for subpixel modeling, mapping, and classification in hyperspectral imagery using learned block-structured discriminative dictionaries, where each block is adapted and optimized to represent a material in a compact and sparse manner. The spectral pixels are modeled by linear combinations of subspaces defined by the learned dictionary atoms, allowing for linear mixture analysis. This model provides flexibility in source representation and selection, thus accounting for spectral variability, small-magnitude errors, and noise. A spatial-spectral coherence regularizer in the optimization allows pixel classification to be influenced by similar neighbors. We extend the proposed approach for cases for which there is no knowledge of the materials in the scene, unsupervised classification, and provide experiments and comparisons with simulated and real data. We also present results when the data have been significantly undersampled and then reconstructed, still retaining high-performance classification, showing the potential role of compressive sensing and sparse modeling techniques in efficient acquisition/transmission missions for hyperspectral imagery.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2011.2163822</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2011-11, Vol.49 (11), p.4263-4281
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_6026943
source IEEE Xplore (Online service)
subjects Data models
Dictionaries
Encoding
Hyperspectral imaging
Image reconstruction
Materials
scene classification
sparse modeling
spectral unmixing
title Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Discriminative%20Sparse%20Representations%20for%20Modeling,%20Source%20Separation,%20and%20Mapping%20of%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Castrodad,%20A.&rft.date=2011-11&rft.volume=49&rft.issue=11&rft.spage=4263&rft.epage=4281&rft.pages=4263-4281&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2011.2163822&rft_dat=%3Ccrossref_ieee_%3E10_1109_TGRS_2011_2163822%3C/crossref_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-ec6fdd0dca98cbfdfec4c38d5fcdf6e4bdb7d7d621dafcfd4ba9ad0a11b40b403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026943&rfr_iscdi=true