Loading…
Influence of Sample Geometry on Inductive Damping Measurement Methods
We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and pos...
Saved in:
Published in: | IEEE transactions on magnetics 2011-10, Vol.47 (10), p.2502-2504 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3 |
container_end_page | 2504 |
container_issue | 10 |
container_start_page | 2502 |
container_title | IEEE transactions on magnetics |
container_volume | 47 |
creator | Liebing, N. Serrano-Guisan, S. Caprile, A. Olivetti, E. S. Celegato, F. Pasquale, M. Muller, A. Schumacher, H. W. |
description | We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed. |
doi_str_mv | 10.1109/TMAG.2011.2155637 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6027812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6027812</ieee_id><sourcerecordid>24730271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqXwAxCLF8YUPyeO47EqJVRqxUCZI8d-hqDEqeIUqf8eV6063T3d3Rs-Qh6BzQCYetlu5uWMM4AZByHyVF6RCagMEsZydU0mjEGRqCzPbsldCL_xzASwCVmuvGv36A3S3tFP3e1apCX2HY7Dgfaerrzdm7H5Q_oaw8Z_0w3qsB-wQz9GP_70NtyTG6fbgA9nnZKvt-V28Z6sP8rVYr5ODFdiTKTB2qLQopAMM7DS5ggpqto6YR0vQBmJKReFqQvHYpeDskzbGlTUXKdTAqe_ZuhDGNBVu6Hp9HCogFVHDtWRQ3XkUJ05xM3zabPTwejWDdqbJlyGPJMp4xJi7-nUaxDxEucxK4Cn_xAOZ0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</creator><creatorcontrib>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</creatorcontrib><description>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2011.2155637</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Coplanar waveguides ; Cross-disciplinary physics: materials science; rheology ; Damping ; Exact sciences and technology ; Ferromagnetic resonance ; Frequency domain analysis ; Gilbert damping ; magnetic films ; magnetic materials ; Magnetic resonance ; magnetic variables measurements ; Magnetization ; Magnetomechanical effects ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; nanostructured materials ; Other topics in materials science ; permalloy ; Physics ; PIMM ; thin films ; VNA-FMR</subject><ispartof>IEEE transactions on magnetics, 2011-10, Vol.47 (10), p.2502-2504</ispartof><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</citedby><cites>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6027812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24730271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liebing, N.</creatorcontrib><creatorcontrib>Serrano-Guisan, S.</creatorcontrib><creatorcontrib>Caprile, A.</creatorcontrib><creatorcontrib>Olivetti, E. S.</creatorcontrib><creatorcontrib>Celegato, F.</creatorcontrib><creatorcontrib>Pasquale, M.</creatorcontrib><creatorcontrib>Muller, A.</creatorcontrib><creatorcontrib>Schumacher, H. W.</creatorcontrib><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</description><subject>Coplanar waveguides</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Damping</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetic resonance</subject><subject>Frequency domain analysis</subject><subject>Gilbert damping</subject><subject>magnetic films</subject><subject>magnetic materials</subject><subject>Magnetic resonance</subject><subject>magnetic variables measurements</subject><subject>Magnetization</subject><subject>Magnetomechanical effects</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>nanostructured materials</subject><subject>Other topics in materials science</subject><subject>permalloy</subject><subject>Physics</subject><subject>PIMM</subject><subject>thin films</subject><subject>VNA-FMR</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqXwAxCLF8YUPyeO47EqJVRqxUCZI8d-hqDEqeIUqf8eV6063T3d3Rs-Qh6BzQCYetlu5uWMM4AZByHyVF6RCagMEsZydU0mjEGRqCzPbsldCL_xzASwCVmuvGv36A3S3tFP3e1apCX2HY7Dgfaerrzdm7H5Q_oaw8Z_0w3qsB-wQz9GP_70NtyTG6fbgA9nnZKvt-V28Z6sP8rVYr5ODFdiTKTB2qLQopAMM7DS5ggpqto6YR0vQBmJKReFqQvHYpeDskzbGlTUXKdTAqe_ZuhDGNBVu6Hp9HCogFVHDtWRQ3XkUJ05xM3zabPTwejWDdqbJlyGPJMp4xJi7-nUaxDxEucxK4Cn_xAOZ0M</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Liebing, N.</creator><creator>Serrano-Guisan, S.</creator><creator>Caprile, A.</creator><creator>Olivetti, E. S.</creator><creator>Celegato, F.</creator><creator>Pasquale, M.</creator><creator>Muller, A.</creator><creator>Schumacher, H. W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><author>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coplanar waveguides</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Damping</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetic resonance</topic><topic>Frequency domain analysis</topic><topic>Gilbert damping</topic><topic>magnetic films</topic><topic>magnetic materials</topic><topic>Magnetic resonance</topic><topic>magnetic variables measurements</topic><topic>Magnetization</topic><topic>Magnetomechanical effects</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>nanostructured materials</topic><topic>Other topics in materials science</topic><topic>permalloy</topic><topic>Physics</topic><topic>PIMM</topic><topic>thin films</topic><topic>VNA-FMR</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebing, N.</creatorcontrib><creatorcontrib>Serrano-Guisan, S.</creatorcontrib><creatorcontrib>Caprile, A.</creatorcontrib><creatorcontrib>Olivetti, E. S.</creatorcontrib><creatorcontrib>Celegato, F.</creatorcontrib><creatorcontrib>Pasquale, M.</creatorcontrib><creatorcontrib>Muller, A.</creatorcontrib><creatorcontrib>Schumacher, H. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebing, N.</au><au>Serrano-Guisan, S.</au><au>Caprile, A.</au><au>Olivetti, E. S.</au><au>Celegato, F.</au><au>Pasquale, M.</au><au>Muller, A.</au><au>Schumacher, H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Sample Geometry on Inductive Damping Measurement Methods</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>47</volume><issue>10</issue><spage>2502</spage><epage>2504</epage><pages>2502-2504</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2011.2155637</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2011-10, Vol.47 (10), p.2502-2504 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_6027812 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Coplanar waveguides Cross-disciplinary physics: materials science rheology Damping Exact sciences and technology Ferromagnetic resonance Frequency domain analysis Gilbert damping magnetic films magnetic materials Magnetic resonance magnetic variables measurements Magnetization Magnetomechanical effects Materials science Methods of deposition of films and coatings film growth and epitaxy nanostructured materials Other topics in materials science permalloy Physics PIMM thin films VNA-FMR |
title | Influence of Sample Geometry on Inductive Damping Measurement Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Sample%20Geometry%20on%20Inductive%20Damping%20Measurement%20Methods&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Liebing,%20N.&rft.date=2011-10-01&rft.volume=47&rft.issue=10&rft.spage=2502&rft.epage=2504&rft.pages=2502-2504&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2011.2155637&rft_dat=%3Cpascalfrancis_ieee_%3E24730271%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6027812&rfr_iscdi=true |