Loading…

Influence of Sample Geometry on Inductive Damping Measurement Methods

We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and pos...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2011-10, Vol.47 (10), p.2502-2504
Main Authors: Liebing, N., Serrano-Guisan, S., Caprile, A., Olivetti, E. S., Celegato, F., Pasquale, M., Muller, A., Schumacher, H. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3
cites cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3
container_end_page 2504
container_issue 10
container_start_page 2502
container_title IEEE transactions on magnetics
container_volume 47
creator Liebing, N.
Serrano-Guisan, S.
Caprile, A.
Olivetti, E. S.
Celegato, F.
Pasquale, M.
Muller, A.
Schumacher, H. W.
description We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.
doi_str_mv 10.1109/TMAG.2011.2155637
format article
fullrecord <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6027812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6027812</ieee_id><sourcerecordid>24730271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EEqXwAxCLF8YUPyeO47EqJVRqxUCZI8d-hqDEqeIUqf8eV6063T3d3Rs-Qh6BzQCYetlu5uWMM4AZByHyVF6RCagMEsZydU0mjEGRqCzPbsldCL_xzASwCVmuvGv36A3S3tFP3e1apCX2HY7Dgfaerrzdm7H5Q_oaw8Z_0w3qsB-wQz9GP_70NtyTG6fbgA9nnZKvt-V28Z6sP8rVYr5ODFdiTKTB2qLQopAMM7DS5ggpqto6YR0vQBmJKReFqQvHYpeDskzbGlTUXKdTAqe_ZuhDGNBVu6Hp9HCogFVHDtWRQ3XkUJ05xM3zabPTwejWDdqbJlyGPJMp4xJi7-nUaxDxEucxK4Cn_xAOZ0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</creator><creatorcontrib>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</creatorcontrib><description>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2011.2155637</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Coplanar waveguides ; Cross-disciplinary physics: materials science; rheology ; Damping ; Exact sciences and technology ; Ferromagnetic resonance ; Frequency domain analysis ; Gilbert damping ; magnetic films ; magnetic materials ; Magnetic resonance ; magnetic variables measurements ; Magnetization ; Magnetomechanical effects ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; nanostructured materials ; Other topics in materials science ; permalloy ; Physics ; PIMM ; thin films ; VNA-FMR</subject><ispartof>IEEE transactions on magnetics, 2011-10, Vol.47 (10), p.2502-2504</ispartof><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</citedby><cites>FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6027812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24730271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liebing, N.</creatorcontrib><creatorcontrib>Serrano-Guisan, S.</creatorcontrib><creatorcontrib>Caprile, A.</creatorcontrib><creatorcontrib>Olivetti, E. S.</creatorcontrib><creatorcontrib>Celegato, F.</creatorcontrib><creatorcontrib>Pasquale, M.</creatorcontrib><creatorcontrib>Muller, A.</creatorcontrib><creatorcontrib>Schumacher, H. W.</creatorcontrib><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</description><subject>Coplanar waveguides</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Damping</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetic resonance</subject><subject>Frequency domain analysis</subject><subject>Gilbert damping</subject><subject>magnetic films</subject><subject>magnetic materials</subject><subject>Magnetic resonance</subject><subject>magnetic variables measurements</subject><subject>Magnetization</subject><subject>Magnetomechanical effects</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>nanostructured materials</subject><subject>Other topics in materials science</subject><subject>permalloy</subject><subject>Physics</subject><subject>PIMM</subject><subject>thin films</subject><subject>VNA-FMR</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EEqXwAxCLF8YUPyeO47EqJVRqxUCZI8d-hqDEqeIUqf8eV6063T3d3Rs-Qh6BzQCYetlu5uWMM4AZByHyVF6RCagMEsZydU0mjEGRqCzPbsldCL_xzASwCVmuvGv36A3S3tFP3e1apCX2HY7Dgfaerrzdm7H5Q_oaw8Z_0w3qsB-wQz9GP_70NtyTG6fbgA9nnZKvt-V28Z6sP8rVYr5ODFdiTKTB2qLQopAMM7DS5ggpqto6YR0vQBmJKReFqQvHYpeDskzbGlTUXKdTAqe_ZuhDGNBVu6Hp9HCogFVHDtWRQ3XkUJ05xM3zabPTwejWDdqbJlyGPJMp4xJi7-nUaxDxEucxK4Cn_xAOZ0M</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Liebing, N.</creator><creator>Serrano-Guisan, S.</creator><creator>Caprile, A.</creator><creator>Olivetti, E. S.</creator><creator>Celegato, F.</creator><creator>Pasquale, M.</creator><creator>Muller, A.</creator><creator>Schumacher, H. W.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111001</creationdate><title>Influence of Sample Geometry on Inductive Damping Measurement Methods</title><author>Liebing, N. ; Serrano-Guisan, S. ; Caprile, A. ; Olivetti, E. S. ; Celegato, F. ; Pasquale, M. ; Muller, A. ; Schumacher, H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coplanar waveguides</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Damping</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetic resonance</topic><topic>Frequency domain analysis</topic><topic>Gilbert damping</topic><topic>magnetic films</topic><topic>magnetic materials</topic><topic>Magnetic resonance</topic><topic>magnetic variables measurements</topic><topic>Magnetization</topic><topic>Magnetomechanical effects</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>nanostructured materials</topic><topic>Other topics in materials science</topic><topic>permalloy</topic><topic>Physics</topic><topic>PIMM</topic><topic>thin films</topic><topic>VNA-FMR</topic><toplevel>online_resources</toplevel><creatorcontrib>Liebing, N.</creatorcontrib><creatorcontrib>Serrano-Guisan, S.</creatorcontrib><creatorcontrib>Caprile, A.</creatorcontrib><creatorcontrib>Olivetti, E. S.</creatorcontrib><creatorcontrib>Celegato, F.</creatorcontrib><creatorcontrib>Pasquale, M.</creatorcontrib><creatorcontrib>Muller, A.</creatorcontrib><creatorcontrib>Schumacher, H. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liebing, N.</au><au>Serrano-Guisan, S.</au><au>Caprile, A.</au><au>Olivetti, E. S.</au><au>Celegato, F.</au><au>Pasquale, M.</au><au>Muller, A.</au><au>Schumacher, H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Sample Geometry on Inductive Damping Measurement Methods</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>47</volume><issue>10</issue><spage>2502</spage><epage>2504</epage><pages>2502-2504</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2011.2155637</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2011-10, Vol.47 (10), p.2502-2504
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_6027812
source IEEE Electronic Library (IEL) Journals
subjects Coplanar waveguides
Cross-disciplinary physics: materials science
rheology
Damping
Exact sciences and technology
Ferromagnetic resonance
Frequency domain analysis
Gilbert damping
magnetic films
magnetic materials
Magnetic resonance
magnetic variables measurements
Magnetization
Magnetomechanical effects
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
nanostructured materials
Other topics in materials science
permalloy
Physics
PIMM
thin films
VNA-FMR
title Influence of Sample Geometry on Inductive Damping Measurement Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Sample%20Geometry%20on%20Inductive%20Damping%20Measurement%20Methods&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Liebing,%20N.&rft.date=2011-10-01&rft.volume=47&rft.issue=10&rft.spage=2502&rft.epage=2504&rft.pages=2502-2504&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2011.2155637&rft_dat=%3Cpascalfrancis_ieee_%3E24730271%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-7cebde5a5870e41d7d6e13e9bdf5df2819c7e3258cb8f0ebd219d0adb199d06a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6027812&rfr_iscdi=true