Loading…

Discrimination of multiple PD sources using wavelet decomposition and principal component analysis

Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. T...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2011-10, Vol.18 (5), p.1702-1711
Main Authors: Hao, L., Lewin, P. L., Hunter, J. A., Swaffield, D. J., Contin, A., Walton, C., Michel, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3
cites cdi_FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3
container_end_page 1711
container_issue 5
container_start_page 1702
container_title IEEE transactions on dielectrics and electrical insulation
container_volume 18
creator Hao, L.
Lewin, P. L.
Hunter, J. A.
Swaffield, D. J.
Contin, A.
Walton, C.
Michel, M.
description Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. This paper presents a procedure for the identification of PD signals generated by multiple sources. Starting with the assumption that different PD sources will display unique signal profiles this will be manifested in the distribution of energies with respect to frequency and time. Therefore the technique presented is based on the comparison of signal energies associated with particular wavelet-decomposition levels. Principal component analysis is adopted to reduce the dimensionality of the data, whilst minimizing lost information in the data concentration step. Physical parameters are extracted from individual PD pulses and projected into 3-dimensional space to allow clustering of data from specific PD sources. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm is chosen for its ability to discover clusters of arbitrary shape in n-dimension space. PD data from individual clusters can then be further analyzed by projecting the clustered data with respect to the original phase relationship. Results and analysis of the technique are compared for experimentally measured PD data from a range of sources commonly found in three different types of high voltage (HV) equipment; ac synchronous generators, induction motors and distribution cables. These experiments collect data using varied test arrangements including sensors with different bandwidths to demonstrate the robustness and indicate the potential for wide applicability of the technique to PD analysis for a range of insulation systems.
doi_str_mv 10.1109/TDEI.2011.6032842
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6032842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6032842</ieee_id><sourcerecordid>963841518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3</originalsourceid><addsrcrecordid>eNpdkLtOwzAUhi0EEqXwAIjFYmFKsWPHlxG15SJVgqHMlpOcIFeJE-IE1LfHvcDAZMvn-63zfwhdUzKjlOj79WL5MksJpTNBWKp4eoImNMtUwinLTuOdSJJoJdU5ughhQwjlWSomKF-4UPSucd4OrvW4rXAz1oPrasBvCxzasS8g4DE4_4G_7RfUMOASirbp2uD2EetL3PXOF66zNd5PPPghvtt6G1y4RGeVrQNcHc8pen9crufPyer16WX-sEoKlvIh0VIpUoqyKrS1kmhKWMVEToCXuWZCZkSlVVZKoRlVUGYgODClaKqZlHmesym6O_zb9e3nCGEwTewGdW09tGMwWjDFaUZVJG__kZvYM64bIcp4KlmUOEX0ABV9G0IPlYklG9tvDSVm59zsnJudc3N0HjM3h4wDgD_-d_oDs5V96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913427360</pqid></control><display><type>article</type><title>Discrimination of multiple PD sources using wavelet decomposition and principal component analysis</title><source>IEEE Xplore (Online service)</source><creator>Hao, L. ; Lewin, P. L. ; Hunter, J. A. ; Swaffield, D. J. ; Contin, A. ; Walton, C. ; Michel, M.</creator><creatorcontrib>Hao, L. ; Lewin, P. L. ; Hunter, J. A. ; Swaffield, D. J. ; Contin, A. ; Walton, C. ; Michel, M.</creatorcontrib><description>Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. This paper presents a procedure for the identification of PD signals generated by multiple sources. Starting with the assumption that different PD sources will display unique signal profiles this will be manifested in the distribution of energies with respect to frequency and time. Therefore the technique presented is based on the comparison of signal energies associated with particular wavelet-decomposition levels. Principal component analysis is adopted to reduce the dimensionality of the data, whilst minimizing lost information in the data concentration step. Physical parameters are extracted from individual PD pulses and projected into 3-dimensional space to allow clustering of data from specific PD sources. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm is chosen for its ability to discover clusters of arbitrary shape in n-dimension space. PD data from individual clusters can then be further analyzed by projecting the clustered data with respect to the original phase relationship. Results and analysis of the technique are compared for experimentally measured PD data from a range of sources commonly found in three different types of high voltage (HV) equipment; ac synchronous generators, induction motors and distribution cables. These experiments collect data using varied test arrangements including sensors with different bandwidths to demonstrate the robustness and indicate the potential for wide applicability of the technique to PD analysis for a range of insulation systems.</description><identifier>ISSN: 1070-9878</identifier><identifier>EISSN: 1558-4135</identifier><identifier>DOI: 10.1109/TDEI.2011.6032842</identifier><identifier>CODEN: ITDIES</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation methods ; Clustering ; Clustering algorithms ; Clusters ; diagnostics ; Electric power generation ; High voltages ; Insulation ; insulation systems ; Noise ; Partial Discharge ; Partial discharges ; Phase relationships ; Principal component analysis ; signalclassification ; Studies ; Wavelet analysis ; Wavelet transforms ; wavelets</subject><ispartof>IEEE transactions on dielectrics and electrical insulation, 2011-10, Vol.18 (5), p.1702-1711</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3</citedby><cites>FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6032842$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><creatorcontrib>Hunter, J. A.</creatorcontrib><creatorcontrib>Swaffield, D. J.</creatorcontrib><creatorcontrib>Contin, A.</creatorcontrib><creatorcontrib>Walton, C.</creatorcontrib><creatorcontrib>Michel, M.</creatorcontrib><title>Discrimination of multiple PD sources using wavelet decomposition and principal component analysis</title><title>IEEE transactions on dielectrics and electrical insulation</title><addtitle>T-DEI</addtitle><description>Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. This paper presents a procedure for the identification of PD signals generated by multiple sources. Starting with the assumption that different PD sources will display unique signal profiles this will be manifested in the distribution of energies with respect to frequency and time. Therefore the technique presented is based on the comparison of signal energies associated with particular wavelet-decomposition levels. Principal component analysis is adopted to reduce the dimensionality of the data, whilst minimizing lost information in the data concentration step. Physical parameters are extracted from individual PD pulses and projected into 3-dimensional space to allow clustering of data from specific PD sources. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm is chosen for its ability to discover clusters of arbitrary shape in n-dimension space. PD data from individual clusters can then be further analyzed by projecting the clustered data with respect to the original phase relationship. Results and analysis of the technique are compared for experimentally measured PD data from a range of sources commonly found in three different types of high voltage (HV) equipment; ac synchronous generators, induction motors and distribution cables. These experiments collect data using varied test arrangements including sensors with different bandwidths to demonstrate the robustness and indicate the potential for wide applicability of the technique to PD analysis for a range of insulation systems.</description><subject>Algorithms</subject><subject>Approximation methods</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>diagnostics</subject><subject>Electric power generation</subject><subject>High voltages</subject><subject>Insulation</subject><subject>insulation systems</subject><subject>Noise</subject><subject>Partial Discharge</subject><subject>Partial discharges</subject><subject>Phase relationships</subject><subject>Principal component analysis</subject><subject>signalclassification</subject><subject>Studies</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>wavelets</subject><issn>1070-9878</issn><issn>1558-4135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkLtOwzAUhi0EEqXwAIjFYmFKsWPHlxG15SJVgqHMlpOcIFeJE-IE1LfHvcDAZMvn-63zfwhdUzKjlOj79WL5MksJpTNBWKp4eoImNMtUwinLTuOdSJJoJdU5ughhQwjlWSomKF-4UPSucd4OrvW4rXAz1oPrasBvCxzasS8g4DE4_4G_7RfUMOASirbp2uD2EetL3PXOF66zNd5PPPghvtt6G1y4RGeVrQNcHc8pen9crufPyer16WX-sEoKlvIh0VIpUoqyKrS1kmhKWMVEToCXuWZCZkSlVVZKoRlVUGYgODClaKqZlHmesym6O_zb9e3nCGEwTewGdW09tGMwWjDFaUZVJG__kZvYM64bIcp4KlmUOEX0ABV9G0IPlYklG9tvDSVm59zsnJudc3N0HjM3h4wDgD_-d_oDs5V96w</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Hao, L.</creator><creator>Lewin, P. L.</creator><creator>Hunter, J. A.</creator><creator>Swaffield, D. J.</creator><creator>Contin, A.</creator><creator>Walton, C.</creator><creator>Michel, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201110</creationdate><title>Discrimination of multiple PD sources using wavelet decomposition and principal component analysis</title><author>Hao, L. ; Lewin, P. L. ; Hunter, J. A. ; Swaffield, D. J. ; Contin, A. ; Walton, C. ; Michel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Approximation methods</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>diagnostics</topic><topic>Electric power generation</topic><topic>High voltages</topic><topic>Insulation</topic><topic>insulation systems</topic><topic>Noise</topic><topic>Partial Discharge</topic><topic>Partial discharges</topic><topic>Phase relationships</topic><topic>Principal component analysis</topic><topic>signalclassification</topic><topic>Studies</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, L.</creatorcontrib><creatorcontrib>Lewin, P. L.</creatorcontrib><creatorcontrib>Hunter, J. A.</creatorcontrib><creatorcontrib>Swaffield, D. J.</creatorcontrib><creatorcontrib>Contin, A.</creatorcontrib><creatorcontrib>Walton, C.</creatorcontrib><creatorcontrib>Michel, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, L.</au><au>Lewin, P. L.</au><au>Hunter, J. A.</au><au>Swaffield, D. J.</au><au>Contin, A.</au><au>Walton, C.</au><au>Michel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrimination of multiple PD sources using wavelet decomposition and principal component analysis</atitle><jtitle>IEEE transactions on dielectrics and electrical insulation</jtitle><stitle>T-DEI</stitle><date>2011-10</date><risdate>2011</risdate><volume>18</volume><issue>5</issue><spage>1702</spage><epage>1711</epage><pages>1702-1711</pages><issn>1070-9878</issn><eissn>1558-4135</eissn><coden>ITDIES</coden><abstract>Partial discharge (PD) signals generated within electrical power equipment can be used to assess the condition of the insulation. In practice, testing often results in multiple PD sources. In order to assess the impact of individual PD sources, signals must first be discriminated from one another. This paper presents a procedure for the identification of PD signals generated by multiple sources. Starting with the assumption that different PD sources will display unique signal profiles this will be manifested in the distribution of energies with respect to frequency and time. Therefore the technique presented is based on the comparison of signal energies associated with particular wavelet-decomposition levels. Principal component analysis is adopted to reduce the dimensionality of the data, whilst minimizing lost information in the data concentration step. Physical parameters are extracted from individual PD pulses and projected into 3-dimensional space to allow clustering of data from specific PD sources. The density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm is chosen for its ability to discover clusters of arbitrary shape in n-dimension space. PD data from individual clusters can then be further analyzed by projecting the clustered data with respect to the original phase relationship. Results and analysis of the technique are compared for experimentally measured PD data from a range of sources commonly found in three different types of high voltage (HV) equipment; ac synchronous generators, induction motors and distribution cables. These experiments collect data using varied test arrangements including sensors with different bandwidths to demonstrate the robustness and indicate the potential for wide applicability of the technique to PD analysis for a range of insulation systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDEI.2011.6032842</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-9878
ispartof IEEE transactions on dielectrics and electrical insulation, 2011-10, Vol.18 (5), p.1702-1711
issn 1070-9878
1558-4135
language eng
recordid cdi_ieee_primary_6032842
source IEEE Xplore (Online service)
subjects Algorithms
Approximation methods
Clustering
Clustering algorithms
Clusters
diagnostics
Electric power generation
High voltages
Insulation
insulation systems
Noise
Partial Discharge
Partial discharges
Phase relationships
Principal component analysis
signalclassification
Studies
Wavelet analysis
Wavelet transforms
wavelets
title Discrimination of multiple PD sources using wavelet decomposition and principal component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrimination%20of%20multiple%20PD%20sources%20using%20wavelet%20decomposition%20and%20principal%20component%20analysis&rft.jtitle=IEEE%20transactions%20on%20dielectrics%20and%20electrical%20insulation&rft.au=Hao,%20L.&rft.date=2011-10&rft.volume=18&rft.issue=5&rft.spage=1702&rft.epage=1711&rft.pages=1702-1711&rft.issn=1070-9878&rft.eissn=1558-4135&rft.coden=ITDIES&rft_id=info:doi/10.1109/TDEI.2011.6032842&rft_dat=%3Cproquest_ieee_%3E963841518%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-97880d6dfc9aa709103f36b0e4db93675082f5d769318ed5e64e388129377bbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=913427360&rft_id=info:pmid/&rft_ieee_id=6032842&rfr_iscdi=true