Loading…
Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration
Summary form only given. The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale net...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Santos, Augusto Delbem, Alexandre London, Joao Bosco Bretas, Newton |
description | Summary form only given. The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time. |
doi_str_mv | 10.1109/PES.2011.6039211 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6039211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6039211</ieee_id><sourcerecordid>6039211</sourcerecordid><originalsourceid>FETCH-ieee_primary_60392113</originalsourceid><addsrcrecordid>eNp9j0FLw0AUhFdUsGrugpf3BxL3JU3SPUvFkwh6L9vsa_rKZjfsbor990apV0_DfMMwjBAPKAtEqZ7e1x9FKRGLRlaqRLwQt7is2xalLPFSZKpd_XmJV2KBqirzusb2RmQxHmYqm0Yt1Wohvt68odzQmPZArvOGXQ_aGRgmm9hvD9QlPhLQ0dtpBk6HE2jb-8BpP4AeR8tkIHmwOvSUx05bAsMxBd7-FiCeYqIBAnXe7bifgv7B9-J6p22k7Kx34vFl_fn8mjMRbcbAw7y0OR-s_k-_AV2_U8M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Santos, Augusto ; Delbem, Alexandre ; London, Joao Bosco ; Bretas, Newton</creator><creatorcontrib>Santos, Augusto ; Delbem, Alexandre ; London, Joao Bosco ; Bretas, Newton</creatorcontrib><description>Summary form only given. The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.</description><identifier>ISSN: 1932-5517</identifier><identifier>ISBN: 9781457710001</identifier><identifier>ISBN: 1457710005</identifier><identifier>EISBN: 1457710021</identifier><identifier>EISBN: 9781457710025</identifier><identifier>EISBN: 9781457710018</identifier><identifier>EISBN: 1457710013</identifier><identifier>DOI: 10.1109/PES.2011.6039211</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decision support systems ; Distance measurement ; Encoding ; Equations ; Evolutionary computation ; Mathematical model ; Search problems</subject><ispartof>2011 IEEE Power and Energy Society General Meeting, 2011, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6039211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6039211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santos, Augusto</creatorcontrib><creatorcontrib>Delbem, Alexandre</creatorcontrib><creatorcontrib>London, Joao Bosco</creatorcontrib><creatorcontrib>Bretas, Newton</creatorcontrib><title>Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration</title><title>2011 IEEE Power and Energy Society General Meeting</title><addtitle>PES</addtitle><description>Summary form only given. The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.</description><subject>Decision support systems</subject><subject>Distance measurement</subject><subject>Encoding</subject><subject>Equations</subject><subject>Evolutionary computation</subject><subject>Mathematical model</subject><subject>Search problems</subject><issn>1932-5517</issn><isbn>9781457710001</isbn><isbn>1457710005</isbn><isbn>1457710021</isbn><isbn>9781457710025</isbn><isbn>9781457710018</isbn><isbn>1457710013</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j0FLw0AUhFdUsGrugpf3BxL3JU3SPUvFkwh6L9vsa_rKZjfsbor990apV0_DfMMwjBAPKAtEqZ7e1x9FKRGLRlaqRLwQt7is2xalLPFSZKpd_XmJV2KBqirzusb2RmQxHmYqm0Yt1Wohvt68odzQmPZArvOGXQ_aGRgmm9hvD9QlPhLQ0dtpBk6HE2jb-8BpP4AeR8tkIHmwOvSUx05bAsMxBd7-FiCeYqIBAnXe7bifgv7B9-J6p22k7Kx34vFl_fn8mjMRbcbAw7y0OR-s_k-_AV2_U8M</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Santos, Augusto</creator><creator>Delbem, Alexandre</creator><creator>London, Joao Bosco</creator><creator>Bretas, Newton</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration</title><author>Santos, Augusto ; Delbem, Alexandre ; London, Joao Bosco ; Bretas, Newton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_60392113</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decision support systems</topic><topic>Distance measurement</topic><topic>Encoding</topic><topic>Equations</topic><topic>Evolutionary computation</topic><topic>Mathematical model</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, Augusto</creatorcontrib><creatorcontrib>Delbem, Alexandre</creatorcontrib><creatorcontrib>London, Joao Bosco</creatorcontrib><creatorcontrib>Bretas, Newton</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santos, Augusto</au><au>Delbem, Alexandre</au><au>London, Joao Bosco</au><au>Bretas, Newton</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration</atitle><btitle>2011 IEEE Power and Energy Society General Meeting</btitle><stitle>PES</stitle><date>2011-07</date><risdate>2011</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1932-5517</issn><isbn>9781457710001</isbn><isbn>1457710005</isbn><eisbn>1457710021</eisbn><eisbn>9781457710025</eisbn><eisbn>9781457710018</eisbn><eisbn>1457710013</eisbn><abstract>Summary form only given. The power loss reduction in distribution systems (DSs) is a nonlinear and multiobjective problem. Service restoration in DSs is even computationally hard since it additionally requires a solution in real-time. Both DS problems are computationally complex. For large-scale networks, the usual problem formulation has thousands of constraint equations. The node-depth encoding (NDE) enables a modeling of DSs problems that eliminates several constraint equations from the usual formulation, making the problem solution simpler. On the other hand, a multiobjective evolutionary algorithm (EA) based on subpopulation tables adequately models several objectives and constraints, enabling a better exploration of the search space. The combination of the multiobjective EA with NDE (MEAN) results in the proposed approach for solving DSs problems for large-scale networks. Simulation results have shown the MEAN is able to find adequate restoration plans for a real DS with 3860 buses and 632 switches in a running time of 0.68 s. Moreover, the MEAN has shown a sublinear running time in function of the system size. Tests with networks ranging from 632 to 5166 switches indicate that the MEAN can find network configurations corresponding to a power loss reduction of 27.64% for very large networks requiring relatively low running time.</abstract><pub>IEEE</pub><doi>10.1109/PES.2011.6039211</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-5517 |
ispartof | 2011 IEEE Power and Energy Society General Meeting, 2011, p.1-1 |
issn | 1932-5517 |
language | eng |
recordid | cdi_ieee_primary_6039211 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Decision support systems Distance measurement Encoding Equations Evolutionary computation Mathematical model Search problems |
title | Node-depth encoding and multiobjective evolutionary algorithm applied to large-scale distribution system reconfiguration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Node-depth%20encoding%20and%20multiobjective%20evolutionary%20algorithm%20applied%20to%20large-scale%20distribution%20system%20reconfiguration&rft.btitle=2011%20IEEE%20Power%20and%20Energy%20Society%20General%20Meeting&rft.au=Santos,%20Augusto&rft.date=2011-07&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1932-5517&rft.isbn=9781457710001&rft.isbn_list=1457710005&rft_id=info:doi/10.1109/PES.2011.6039211&rft.eisbn=1457710021&rft.eisbn_list=9781457710025&rft.eisbn_list=9781457710018&rft.eisbn_list=1457710013&rft_dat=%3Cieee_6IE%3E6039211%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_60392113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6039211&rfr_iscdi=true |