Loading…

Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree

The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present...

Full description

Saved in:
Bibliographic Details
Main Authors: Chrysos, G., Dagritzikos, P., Papaefstathiou, I., Dollas, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 416
container_issue
container_start_page 411
container_title
container_volume
creator Chrysos, G.
Dagritzikos, P.
Papaefstathiou, I.
Dollas, A.
description The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.
doi_str_mv 10.1109/FPL.2011.82
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6044855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6044855</ieee_id><sourcerecordid>6044855</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93</originalsourceid><addsrcrecordid>eNo9zEtLw0AUBeDxBZbalUs38wcS5yZ3XkuprS3UB9KF4KLcpHfqSJqUJAr99xYrrg6Hj3OEuAaVAih_O31ZpJkCSF12IkbeOmWN16gzr0_FADyaBNC5s18D1NYeKvrzf7Nvl2LUdZ9KKbDG5OgG4v2p-eZKUr2Ws7j5qPZyEkIsI9e9fOWyqUPcfLVUVCzn213F2wNQH5taNkHeU0_yMdax3shxRV0XD9OjLlvmK3ERqOp49JdDsZxOluNZsnh-mI_vFkn0qk8QsyIA5Kw8IjIRmGAtIZYGqSAHtnSuKDGntbFBcVEEhXodmLQxyD4fipvjbWTm1a6NW2r3K6MQndb5DzciV9Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><source>IEEE Xplore All Conference Series</source><creator>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</creator><creatorcontrib>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</creatorcontrib><description>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</description><identifier>ISSN: 1946-147X</identifier><identifier>ISBN: 9781457714849</identifier><identifier>ISBN: 1457714841</identifier><identifier>EISSN: 1946-1488</identifier><identifier>EISBN: 9780769545295</identifier><identifier>EISBN: 0769545297</identifier><identifier>DOI: 10.1109/FPL.2011.82</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Computer architecture ; Data mining ; Decision Tree Classification (DTC) ; Decision trees ; Field programmable gate arrays ; Reconfigurable architecture ; Software ; Software algorithms</subject><ispartof>2011 21st International Conference on Field Programmable Logic and Applications, 2011, p.411-416</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6044855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6044855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chrysos, G.</creatorcontrib><creatorcontrib>Dagritzikos, P.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><creatorcontrib>Dollas, A.</creatorcontrib><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><title>2011 21st International Conference on Field Programmable Logic and Applications</title><addtitle>fpl</addtitle><description>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</description><subject>Classification algorithms</subject><subject>Computer architecture</subject><subject>Data mining</subject><subject>Decision Tree Classification (DTC)</subject><subject>Decision trees</subject><subject>Field programmable gate arrays</subject><subject>Reconfigurable architecture</subject><subject>Software</subject><subject>Software algorithms</subject><issn>1946-147X</issn><issn>1946-1488</issn><isbn>9781457714849</isbn><isbn>1457714841</isbn><isbn>9780769545295</isbn><isbn>0769545297</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9zEtLw0AUBeDxBZbalUs38wcS5yZ3XkuprS3UB9KF4KLcpHfqSJqUJAr99xYrrg6Hj3OEuAaVAih_O31ZpJkCSF12IkbeOmWN16gzr0_FADyaBNC5s18D1NYeKvrzf7Nvl2LUdZ9KKbDG5OgG4v2p-eZKUr2Ws7j5qPZyEkIsI9e9fOWyqUPcfLVUVCzn213F2wNQH5taNkHeU0_yMdax3shxRV0XD9OjLlvmK3ERqOp49JdDsZxOluNZsnh-mI_vFkn0qk8QsyIA5Kw8IjIRmGAtIZYGqSAHtnSuKDGntbFBcVEEhXodmLQxyD4fipvjbWTm1a6NW2r3K6MQndb5DzciV9Y</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Chrysos, G.</creator><creator>Dagritzikos, P.</creator><creator>Papaefstathiou, I.</creator><creator>Dollas, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><author>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Computer architecture</topic><topic>Data mining</topic><topic>Decision Tree Classification (DTC)</topic><topic>Decision trees</topic><topic>Field programmable gate arrays</topic><topic>Reconfigurable architecture</topic><topic>Software</topic><topic>Software algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chrysos, G.</creatorcontrib><creatorcontrib>Dagritzikos, P.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><creatorcontrib>Dollas, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chrysos, G.</au><au>Dagritzikos, P.</au><au>Papaefstathiou, I.</au><au>Dollas, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</atitle><btitle>2011 21st International Conference on Field Programmable Logic and Applications</btitle><stitle>fpl</stitle><date>2011-09</date><risdate>2011</risdate><spage>411</spage><epage>416</epage><pages>411-416</pages><issn>1946-147X</issn><eissn>1946-1488</eissn><isbn>9781457714849</isbn><isbn>1457714841</isbn><eisbn>9780769545295</eisbn><eisbn>0769545297</eisbn><abstract>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</abstract><pub>IEEE</pub><doi>10.1109/FPL.2011.82</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1946-147X
ispartof 2011 21st International Conference on Field Programmable Logic and Applications, 2011, p.411-416
issn 1946-147X
1946-1488
language eng
recordid cdi_ieee_primary_6044855
source IEEE Xplore All Conference Series
subjects Classification algorithms
Computer architecture
Data mining
Decision Tree Classification (DTC)
Decision trees
Field programmable gate arrays
Reconfigurable architecture
Software
Software algorithms
title Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20and%20Highly%20Efficient%20Reconfigurable%20Implementation%20of%20Data%20Mining%20Classification%20Tree&rft.btitle=2011%2021st%20International%20Conference%20on%20Field%20Programmable%20Logic%20and%20Applications&rft.au=Chrysos,%20G.&rft.date=2011-09&rft.spage=411&rft.epage=416&rft.pages=411-416&rft.issn=1946-147X&rft.eissn=1946-1488&rft.isbn=9781457714849&rft.isbn_list=1457714841&rft_id=info:doi/10.1109/FPL.2011.82&rft.eisbn=9780769545295&rft.eisbn_list=0769545297&rft_dat=%3Cieee_CHZPO%3E6044855%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6044855&rfr_iscdi=true