Loading…
Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree
The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 416 |
container_issue | |
container_start_page | 411 |
container_title | |
container_volume | |
creator | Chrysos, G. Dagritzikos, P. Papaefstathiou, I. Dollas, A. |
description | The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead. |
doi_str_mv | 10.1109/FPL.2011.82 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6044855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6044855</ieee_id><sourcerecordid>6044855</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93</originalsourceid><addsrcrecordid>eNo9zEtLw0AUBeDxBZbalUs38wcS5yZ3XkuprS3UB9KF4KLcpHfqSJqUJAr99xYrrg6Hj3OEuAaVAih_O31ZpJkCSF12IkbeOmWN16gzr0_FADyaBNC5s18D1NYeKvrzf7Nvl2LUdZ9KKbDG5OgG4v2p-eZKUr2Ws7j5qPZyEkIsI9e9fOWyqUPcfLVUVCzn213F2wNQH5taNkHeU0_yMdax3shxRV0XD9OjLlvmK3ERqOp49JdDsZxOluNZsnh-mI_vFkn0qk8QsyIA5Kw8IjIRmGAtIZYGqSAHtnSuKDGntbFBcVEEhXodmLQxyD4fipvjbWTm1a6NW2r3K6MQndb5DzciV9Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><source>IEEE Xplore All Conference Series</source><creator>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</creator><creatorcontrib>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</creatorcontrib><description>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</description><identifier>ISSN: 1946-147X</identifier><identifier>ISBN: 9781457714849</identifier><identifier>ISBN: 1457714841</identifier><identifier>EISSN: 1946-1488</identifier><identifier>EISBN: 9780769545295</identifier><identifier>EISBN: 0769545297</identifier><identifier>DOI: 10.1109/FPL.2011.82</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Computer architecture ; Data mining ; Decision Tree Classification (DTC) ; Decision trees ; Field programmable gate arrays ; Reconfigurable architecture ; Software ; Software algorithms</subject><ispartof>2011 21st International Conference on Field Programmable Logic and Applications, 2011, p.411-416</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6044855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6044855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chrysos, G.</creatorcontrib><creatorcontrib>Dagritzikos, P.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><creatorcontrib>Dollas, A.</creatorcontrib><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><title>2011 21st International Conference on Field Programmable Logic and Applications</title><addtitle>fpl</addtitle><description>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</description><subject>Classification algorithms</subject><subject>Computer architecture</subject><subject>Data mining</subject><subject>Decision Tree Classification (DTC)</subject><subject>Decision trees</subject><subject>Field programmable gate arrays</subject><subject>Reconfigurable architecture</subject><subject>Software</subject><subject>Software algorithms</subject><issn>1946-147X</issn><issn>1946-1488</issn><isbn>9781457714849</isbn><isbn>1457714841</isbn><isbn>9780769545295</isbn><isbn>0769545297</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9zEtLw0AUBeDxBZbalUs38wcS5yZ3XkuprS3UB9KF4KLcpHfqSJqUJAr99xYrrg6Hj3OEuAaVAih_O31ZpJkCSF12IkbeOmWN16gzr0_FADyaBNC5s18D1NYeKvrzf7Nvl2LUdZ9KKbDG5OgG4v2p-eZKUr2Ws7j5qPZyEkIsI9e9fOWyqUPcfLVUVCzn213F2wNQH5taNkHeU0_yMdax3shxRV0XD9OjLlvmK3ERqOp49JdDsZxOluNZsnh-mI_vFkn0qk8QsyIA5Kw8IjIRmGAtIZYGqSAHtnSuKDGntbFBcVEEhXodmLQxyD4fipvjbWTm1a6NW2r3K6MQndb5DzciV9Y</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Chrysos, G.</creator><creator>Dagritzikos, P.</creator><creator>Papaefstathiou, I.</creator><creator>Dollas, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</title><author>Chrysos, G. ; Dagritzikos, P. ; Papaefstathiou, I. ; Dollas, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Computer architecture</topic><topic>Data mining</topic><topic>Decision Tree Classification (DTC)</topic><topic>Decision trees</topic><topic>Field programmable gate arrays</topic><topic>Reconfigurable architecture</topic><topic>Software</topic><topic>Software algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Chrysos, G.</creatorcontrib><creatorcontrib>Dagritzikos, P.</creatorcontrib><creatorcontrib>Papaefstathiou, I.</creatorcontrib><creatorcontrib>Dollas, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chrysos, G.</au><au>Dagritzikos, P.</au><au>Papaefstathiou, I.</au><au>Dollas, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree</atitle><btitle>2011 21st International Conference on Field Programmable Logic and Applications</btitle><stitle>fpl</stitle><date>2011-09</date><risdate>2011</risdate><spage>411</spage><epage>416</epage><pages>411-416</pages><issn>1946-147X</issn><eissn>1946-1488</eissn><isbn>9781457714849</isbn><isbn>1457714841</isbn><eisbn>9780769545295</eisbn><eisbn>0769545297</eisbn><abstract>The available e-data throughout the Web are growing at such a high rate that data mining on the web is considered the biggest challenge of information technology. As a result it is crucial to find new and innovative ways for classifying and mining those huge amounts of data. In this paper we present an implementation of a state-of-the-art data mining algorithm on a modern FPGA. This is one of the first approaches utilizing the resources of an FPGA to accelerate certain very CPU intensive data-mining/data classification schemes and our real-world results from actual runs on hardware demonstrate that it is a highly promising one. In particular, our FPGA-based system achieves, depending on the data classified, a speedup from 4x and up to 50x (on average 25x) when compared with a state-of-the art multi-core CPU, including I/O overhead.</abstract><pub>IEEE</pub><doi>10.1109/FPL.2011.82</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1946-147X |
ispartof | 2011 21st International Conference on Field Programmable Logic and Applications, 2011, p.411-416 |
issn | 1946-147X 1946-1488 |
language | eng |
recordid | cdi_ieee_primary_6044855 |
source | IEEE Xplore All Conference Series |
subjects | Classification algorithms Computer architecture Data mining Decision Tree Classification (DTC) Decision trees Field programmable gate arrays Reconfigurable architecture Software Software algorithms |
title | Novel and Highly Efficient Reconfigurable Implementation of Data Mining Classification Tree |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Novel%20and%20Highly%20Efficient%20Reconfigurable%20Implementation%20of%20Data%20Mining%20Classification%20Tree&rft.btitle=2011%2021st%20International%20Conference%20on%20Field%20Programmable%20Logic%20and%20Applications&rft.au=Chrysos,%20G.&rft.date=2011-09&rft.spage=411&rft.epage=416&rft.pages=411-416&rft.issn=1946-147X&rft.eissn=1946-1488&rft.isbn=9781457714849&rft.isbn_list=1457714841&rft_id=info:doi/10.1109/FPL.2011.82&rft.eisbn=9780769545295&rft.eisbn_list=0769545297&rft_dat=%3Cieee_CHZPO%3E6044855%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-442bf113e09444eaa16f77a44c64aba817c88bc43ad67f0ebbf045dfea5664e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6044855&rfr_iscdi=true |