Loading…

MUSIC algorithm applied to Advanced EMI sensors data for UXO classification

The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their locati...

Full description

Saved in:
Bibliographic Details
Main Authors: Economou, D. P., Shubitidze, F., Barrowes, B., Uzunoglu, N. K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1163
container_issue
container_start_page 1160
container_title
container_volume
creator Economou, D. P.
Shubitidze, F.
Barrowes, B.
Uzunoglu, N. K.
description The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.
doi_str_mv 10.1109/ICEAA.2011.6046514
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6046514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6046514</ieee_id><sourcerecordid>6046514</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhSMiqLMvoDd5gc6kadLkspSqxY1duIF342_yRyNdW5oi-PYWnFfnO_Bx4BByz9mac2Yem6ouy3XGOF8rlivJ8wuSmEJzxTOdL5Bdktv_ovQ1SWL8YmzxmdKFviGv28NbU1HoPoYpzJ8nCuPYBXR0HmjpvqG3C9fbhkbs4zBF6mAG6oeJHt531HYQY_DBwhyG_o5ceegiJudckf1Tva9e0s3uuanKTRoMm1MF6D1a5rQVstVoWtBK52iY9NyhMa3iwIuCyRa9MNI4qbJWgBdoQSohVuThbzYg4nGcwgmmn-P5vvgFAyBOHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</creator><creatorcontrib>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</creatorcontrib><description>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</description><identifier>ISBN: 1612849768</identifier><identifier>ISBN: 9781612849768</identifier><identifier>EISBN: 9781612849782</identifier><identifier>EISBN: 1612849776</identifier><identifier>EISBN: 1612849784</identifier><identifier>EISBN: 9781612849775</identifier><identifier>DOI: 10.1109/ICEAA.2011.6046514</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Educational institutions ; Eigenvalues and eigenfunctions ; Electromagnetic interference ; Multiple signal classification ; Noise ; Sensors</subject><ispartof>2011 International Conference on Electromagnetics in Advanced Applications, 2011, p.1160-1163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6046514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6046514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Economou, D. P.</creatorcontrib><creatorcontrib>Shubitidze, F.</creatorcontrib><creatorcontrib>Barrowes, B.</creatorcontrib><creatorcontrib>Uzunoglu, N. K.</creatorcontrib><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><title>2011 International Conference on Electromagnetics in Advanced Applications</title><addtitle>ICEAA</addtitle><description>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</description><subject>Arrays</subject><subject>Educational institutions</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electromagnetic interference</subject><subject>Multiple signal classification</subject><subject>Noise</subject><subject>Sensors</subject><isbn>1612849768</isbn><isbn>9781612849768</isbn><isbn>9781612849782</isbn><isbn>1612849776</isbn><isbn>1612849784</isbn><isbn>9781612849775</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9FKwzAYhSMiqLMvoDd5gc6kadLkspSqxY1duIF342_yRyNdW5oi-PYWnFfnO_Bx4BByz9mac2Yem6ouy3XGOF8rlivJ8wuSmEJzxTOdL5Bdktv_ovQ1SWL8YmzxmdKFviGv28NbU1HoPoYpzJ8nCuPYBXR0HmjpvqG3C9fbhkbs4zBF6mAG6oeJHt531HYQY_DBwhyG_o5ceegiJudckf1Tva9e0s3uuanKTRoMm1MF6D1a5rQVstVoWtBK52iY9NyhMa3iwIuCyRa9MNI4qbJWgBdoQSohVuThbzYg4nGcwgmmn-P5vvgFAyBOHw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Economou, D. P.</creator><creator>Shubitidze, F.</creator><creator>Barrowes, B.</creator><creator>Uzunoglu, N. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><author>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Educational institutions</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electromagnetic interference</topic><topic>Multiple signal classification</topic><topic>Noise</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Economou, D. P.</creatorcontrib><creatorcontrib>Shubitidze, F.</creatorcontrib><creatorcontrib>Barrowes, B.</creatorcontrib><creatorcontrib>Uzunoglu, N. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Economou, D. P.</au><au>Shubitidze, F.</au><au>Barrowes, B.</au><au>Uzunoglu, N. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</atitle><btitle>2011 International Conference on Electromagnetics in Advanced Applications</btitle><stitle>ICEAA</stitle><date>2011-09</date><risdate>2011</risdate><spage>1160</spage><epage>1163</epage><pages>1160-1163</pages><isbn>1612849768</isbn><isbn>9781612849768</isbn><eisbn>9781612849782</eisbn><eisbn>1612849776</eisbn><eisbn>1612849784</eisbn><eisbn>9781612849775</eisbn><abstract>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</abstract><pub>IEEE</pub><doi>10.1109/ICEAA.2011.6046514</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612849768
ispartof 2011 International Conference on Electromagnetics in Advanced Applications, 2011, p.1160-1163
issn
language eng
recordid cdi_ieee_primary_6046514
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Educational institutions
Eigenvalues and eigenfunctions
Electromagnetic interference
Multiple signal classification
Noise
Sensors
title MUSIC algorithm applied to Advanced EMI sensors data for UXO classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MUSIC%20algorithm%20applied%20to%20Advanced%20EMI%20sensors%20data%20for%20UXO%20classification&rft.btitle=2011%20International%20Conference%20on%20Electromagnetics%20in%20Advanced%20Applications&rft.au=Economou,%20D.%20P.&rft.date=2011-09&rft.spage=1160&rft.epage=1163&rft.pages=1160-1163&rft.isbn=1612849768&rft.isbn_list=9781612849768&rft_id=info:doi/10.1109/ICEAA.2011.6046514&rft.eisbn=9781612849782&rft.eisbn_list=1612849776&rft.eisbn_list=1612849784&rft.eisbn_list=9781612849775&rft_dat=%3Cieee_6IE%3E6046514%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6046514&rfr_iscdi=true