Loading…
MUSIC algorithm applied to Advanced EMI sensors data for UXO classification
The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their locati...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1163 |
container_issue | |
container_start_page | 1160 |
container_title | |
container_volume | |
creator | Economou, D. P. Shubitidze, F. Barrowes, B. Uzunoglu, N. K. |
description | The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method. |
doi_str_mv | 10.1109/ICEAA.2011.6046514 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6046514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6046514</ieee_id><sourcerecordid>6046514</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633</originalsourceid><addsrcrecordid>eNo1j9FKwzAYhSMiqLMvoDd5gc6kadLkspSqxY1duIF342_yRyNdW5oi-PYWnFfnO_Bx4BByz9mac2Yem6ouy3XGOF8rlivJ8wuSmEJzxTOdL5Bdktv_ovQ1SWL8YmzxmdKFviGv28NbU1HoPoYpzJ8nCuPYBXR0HmjpvqG3C9fbhkbs4zBF6mAG6oeJHt531HYQY_DBwhyG_o5ceegiJudckf1Tva9e0s3uuanKTRoMm1MF6D1a5rQVstVoWtBK52iY9NyhMa3iwIuCyRa9MNI4qbJWgBdoQSohVuThbzYg4nGcwgmmn-P5vvgFAyBOHw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</creator><creatorcontrib>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</creatorcontrib><description>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</description><identifier>ISBN: 1612849768</identifier><identifier>ISBN: 9781612849768</identifier><identifier>EISBN: 9781612849782</identifier><identifier>EISBN: 1612849776</identifier><identifier>EISBN: 1612849784</identifier><identifier>EISBN: 9781612849775</identifier><identifier>DOI: 10.1109/ICEAA.2011.6046514</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Educational institutions ; Eigenvalues and eigenfunctions ; Electromagnetic interference ; Multiple signal classification ; Noise ; Sensors</subject><ispartof>2011 International Conference on Electromagnetics in Advanced Applications, 2011, p.1160-1163</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6046514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6046514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Economou, D. P.</creatorcontrib><creatorcontrib>Shubitidze, F.</creatorcontrib><creatorcontrib>Barrowes, B.</creatorcontrib><creatorcontrib>Uzunoglu, N. K.</creatorcontrib><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><title>2011 International Conference on Electromagnetics in Advanced Applications</title><addtitle>ICEAA</addtitle><description>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</description><subject>Arrays</subject><subject>Educational institutions</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electromagnetic interference</subject><subject>Multiple signal classification</subject><subject>Noise</subject><subject>Sensors</subject><isbn>1612849768</isbn><isbn>9781612849768</isbn><isbn>9781612849782</isbn><isbn>1612849776</isbn><isbn>1612849784</isbn><isbn>9781612849775</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j9FKwzAYhSMiqLMvoDd5gc6kadLkspSqxY1duIF342_yRyNdW5oi-PYWnFfnO_Bx4BByz9mac2Yem6ouy3XGOF8rlivJ8wuSmEJzxTOdL5Bdktv_ovQ1SWL8YmzxmdKFviGv28NbU1HoPoYpzJ8nCuPYBXR0HmjpvqG3C9fbhkbs4zBF6mAG6oeJHt531HYQY_DBwhyG_o5ceegiJudckf1Tva9e0s3uuanKTRoMm1MF6D1a5rQVstVoWtBK52iY9NyhMa3iwIuCyRa9MNI4qbJWgBdoQSohVuThbzYg4nGcwgmmn-P5vvgFAyBOHw</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Economou, D. P.</creator><creator>Shubitidze, F.</creator><creator>Barrowes, B.</creator><creator>Uzunoglu, N. K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</title><author>Economou, D. P. ; Shubitidze, F. ; Barrowes, B. ; Uzunoglu, N. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Educational institutions</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electromagnetic interference</topic><topic>Multiple signal classification</topic><topic>Noise</topic><topic>Sensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Economou, D. P.</creatorcontrib><creatorcontrib>Shubitidze, F.</creatorcontrib><creatorcontrib>Barrowes, B.</creatorcontrib><creatorcontrib>Uzunoglu, N. K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Economou, D. P.</au><au>Shubitidze, F.</au><au>Barrowes, B.</au><au>Uzunoglu, N. K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MUSIC algorithm applied to Advanced EMI sensors data for UXO classification</atitle><btitle>2011 International Conference on Electromagnetics in Advanced Applications</btitle><stitle>ICEAA</stitle><date>2011-09</date><risdate>2011</risdate><spage>1160</spage><epage>1163</epage><pages>1160-1163</pages><isbn>1612849768</isbn><isbn>9781612849768</isbn><eisbn>9781612849782</eisbn><eisbn>1612849776</eisbn><eisbn>1612849784</eisbn><eisbn>9781612849775</eisbn><abstract>The multiple signal classification (MUSIC) algorithm, that utilizes next generation electromagnetic induction (EMI) sensor, multi static response (MRS) data matrix's eigenvector's and eigenvalues, is employed for estimating number of subsurface metallic targets and pinpointing their location. The method divides MRS matrix data eigenvectors into two groups: the noise and signal subspaces. It projects the estimated EM signal into the noise subspace and utilizes the fact that the modeled magnetic field for each actual source location is orthogonal to the noise subspace. Data are presented for demonstrating the effectiveness of the method.</abstract><pub>IEEE</pub><doi>10.1109/ICEAA.2011.6046514</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612849768 |
ispartof | 2011 International Conference on Electromagnetics in Advanced Applications, 2011, p.1160-1163 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6046514 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Educational institutions Eigenvalues and eigenfunctions Electromagnetic interference Multiple signal classification Noise Sensors |
title | MUSIC algorithm applied to Advanced EMI sensors data for UXO classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MUSIC%20algorithm%20applied%20to%20Advanced%20EMI%20sensors%20data%20for%20UXO%20classification&rft.btitle=2011%20International%20Conference%20on%20Electromagnetics%20in%20Advanced%20Applications&rft.au=Economou,%20D.%20P.&rft.date=2011-09&rft.spage=1160&rft.epage=1163&rft.pages=1160-1163&rft.isbn=1612849768&rft.isbn_list=9781612849768&rft_id=info:doi/10.1109/ICEAA.2011.6046514&rft.eisbn=9781612849782&rft.eisbn_list=1612849776&rft.eisbn_list=1612849784&rft.eisbn_list=9781612849775&rft_dat=%3Cieee_6IE%3E6046514%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6aeffec0d8c35b8e9ba8684e905f1de99b61a17705bef3959d562b3af3eca5633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6046514&rfr_iscdi=true |