Loading…
Design and application of Soft Sensor using Ensemble Methods
Industries are faced with the choice of suitable process control policies to improve costs, quality and raw material consumption. In the paper pulp industry, it is important to estimate quickly the Chemical Oxygen Demand (COD), a parameter that is highly correlated to product quality. Soft Sensors (...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c266t-a246c89cfcca3c53b92a15cce5373ff4a78585544e88e45b541f6be24ca5e3b3 |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Soares, S. Araujo, R. Sousa, P. Souza, F. |
description | Industries are faced with the choice of suitable process control policies to improve costs, quality and raw material consumption. In the paper pulp industry, it is important to estimate quickly the Chemical Oxygen Demand (COD), a parameter that is highly correlated to product quality. Soft Sensors (SSs) have been established as alternative to hardware sensors and laboratory measurements for monitoring and control purposes. However, in real setups it is often difficult to get sufficient data for SS development. This work proposes Ensemble Methods (EMs) as a way to improve the SS performance for small datasets. EMs use a set of models to obtain better prediction. Their success is usually attributed to the diversity. Bootstrap and noise injection are used to produce diverse models. Several combinations of EMs are compared. The SS is successfully applied to estimate COD in a pulp process. |
doi_str_mv | 10.1109/ETFA.2011.6059061 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6059061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6059061</ieee_id><sourcerecordid>6059061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-a246c89cfcca3c53b92a15cce5373ff4a78585544e88e45b541f6be24ca5e3b3</originalsourceid><addsrcrecordid>eNpFkE9LwzAYh-M_cM59APGSL9CaNHmTBryMrXODiYf1PtLszYx0aWnqwW-v4NDTA78HfoeHkAfOcs6Zearq1TwvGOe5YmCY4hfkjkvQmjGu1CWZcCNVxjSYq3-h5fWfkOyWzFL6YD87M8oIMyHPS0zhGKmNB2r7vg3OjqGLtPN01_mR7jCmbqCfKcQjrWLCU9MifcXxvTuke3LjbZtwduaU1KuqXqyz7dvLZjHfZq5QasxsIZUrjfPOWeFANKawHJxDEFp4L60uoQSQEssSJTQguVcNFtJZQNGIKXn8vQ2IuO-HcLLD1_4cQXwDXbdLpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design and application of Soft Sensor using Ensemble Methods</title><source>IEEE Xplore All Conference Series</source><creator>Soares, S. ; Araujo, R. ; Sousa, P. ; Souza, F.</creator><creatorcontrib>Soares, S. ; Araujo, R. ; Sousa, P. ; Souza, F.</creatorcontrib><description>Industries are faced with the choice of suitable process control policies to improve costs, quality and raw material consumption. In the paper pulp industry, it is important to estimate quickly the Chemical Oxygen Demand (COD), a parameter that is highly correlated to product quality. Soft Sensors (SSs) have been established as alternative to hardware sensors and laboratory measurements for monitoring and control purposes. However, in real setups it is often difficult to get sufficient data for SS development. This work proposes Ensemble Methods (EMs) as a way to improve the SS performance for small datasets. EMs use a set of models to obtain better prediction. Their success is usually attributed to the diversity. Bootstrap and noise injection are used to produce diverse models. Several combinations of EMs are compared. The SS is successfully applied to estimate COD in a pulp process.</description><identifier>ISSN: 1946-0740</identifier><identifier>ISBN: 1457700174</identifier><identifier>ISBN: 9781457700170</identifier><identifier>EISSN: 1946-0759</identifier><identifier>EISBN: 1457700166</identifier><identifier>EISBN: 9781457700163</identifier><identifier>EISBN: 9781457700187</identifier><identifier>EISBN: 1457700182</identifier><identifier>DOI: 10.1109/ETFA.2011.6059061</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Chemicals ; Diversity reception ; Noise ; Paper pulp ; Predictive models ; Training</subject><ispartof>ETFA2011, 2011, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-a246c89cfcca3c53b92a15cce5373ff4a78585544e88e45b541f6be24ca5e3b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6059061$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6059061$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, S.</creatorcontrib><creatorcontrib>Araujo, R.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Souza, F.</creatorcontrib><title>Design and application of Soft Sensor using Ensemble Methods</title><title>ETFA2011</title><addtitle>ETFA</addtitle><description>Industries are faced with the choice of suitable process control policies to improve costs, quality and raw material consumption. In the paper pulp industry, it is important to estimate quickly the Chemical Oxygen Demand (COD), a parameter that is highly correlated to product quality. Soft Sensors (SSs) have been established as alternative to hardware sensors and laboratory measurements for monitoring and control purposes. However, in real setups it is often difficult to get sufficient data for SS development. This work proposes Ensemble Methods (EMs) as a way to improve the SS performance for small datasets. EMs use a set of models to obtain better prediction. Their success is usually attributed to the diversity. Bootstrap and noise injection are used to produce diverse models. Several combinations of EMs are compared. The SS is successfully applied to estimate COD in a pulp process.</description><subject>Artificial neural networks</subject><subject>Chemicals</subject><subject>Diversity reception</subject><subject>Noise</subject><subject>Paper pulp</subject><subject>Predictive models</subject><subject>Training</subject><issn>1946-0740</issn><issn>1946-0759</issn><isbn>1457700174</isbn><isbn>9781457700170</isbn><isbn>1457700166</isbn><isbn>9781457700163</isbn><isbn>9781457700187</isbn><isbn>1457700182</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFkE9LwzAYh-M_cM59APGSL9CaNHmTBryMrXODiYf1PtLszYx0aWnqwW-v4NDTA78HfoeHkAfOcs6Zearq1TwvGOe5YmCY4hfkjkvQmjGu1CWZcCNVxjSYq3-h5fWfkOyWzFL6YD87M8oIMyHPS0zhGKmNB2r7vg3OjqGLtPN01_mR7jCmbqCfKcQjrWLCU9MifcXxvTuke3LjbZtwduaU1KuqXqyz7dvLZjHfZq5QasxsIZUrjfPOWeFANKawHJxDEFp4L60uoQSQEssSJTQguVcNFtJZQNGIKXn8vQ2IuO-HcLLD1_4cQXwDXbdLpA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Soares, S.</creator><creator>Araujo, R.</creator><creator>Sousa, P.</creator><creator>Souza, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110101</creationdate><title>Design and application of Soft Sensor using Ensemble Methods</title><author>Soares, S. ; Araujo, R. ; Sousa, P. ; Souza, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-a246c89cfcca3c53b92a15cce5373ff4a78585544e88e45b541f6be24ca5e3b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Chemicals</topic><topic>Diversity reception</topic><topic>Noise</topic><topic>Paper pulp</topic><topic>Predictive models</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Soares, S.</creatorcontrib><creatorcontrib>Araujo, R.</creatorcontrib><creatorcontrib>Sousa, P.</creatorcontrib><creatorcontrib>Souza, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, S.</au><au>Araujo, R.</au><au>Sousa, P.</au><au>Souza, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design and application of Soft Sensor using Ensemble Methods</atitle><btitle>ETFA2011</btitle><stitle>ETFA</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1946-0740</issn><eissn>1946-0759</eissn><isbn>1457700174</isbn><isbn>9781457700170</isbn><eisbn>1457700166</eisbn><eisbn>9781457700163</eisbn><eisbn>9781457700187</eisbn><eisbn>1457700182</eisbn><abstract>Industries are faced with the choice of suitable process control policies to improve costs, quality and raw material consumption. In the paper pulp industry, it is important to estimate quickly the Chemical Oxygen Demand (COD), a parameter that is highly correlated to product quality. Soft Sensors (SSs) have been established as alternative to hardware sensors and laboratory measurements for monitoring and control purposes. However, in real setups it is often difficult to get sufficient data for SS development. This work proposes Ensemble Methods (EMs) as a way to improve the SS performance for small datasets. EMs use a set of models to obtain better prediction. Their success is usually attributed to the diversity. Bootstrap and noise injection are used to produce diverse models. Several combinations of EMs are compared. The SS is successfully applied to estimate COD in a pulp process.</abstract><pub>IEEE</pub><doi>10.1109/ETFA.2011.6059061</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1946-0740 |
ispartof | ETFA2011, 2011, p.1-8 |
issn | 1946-0740 1946-0759 |
language | eng |
recordid | cdi_ieee_primary_6059061 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks Chemicals Diversity reception Noise Paper pulp Predictive models Training |
title | Design and application of Soft Sensor using Ensemble Methods |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20and%20application%20of%20Soft%20Sensor%20using%20Ensemble%20Methods&rft.btitle=ETFA2011&rft.au=Soares,%20S.&rft.date=2011-01-01&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1946-0740&rft.eissn=1946-0759&rft.isbn=1457700174&rft.isbn_list=9781457700170&rft_id=info:doi/10.1109/ETFA.2011.6059061&rft.eisbn=1457700166&rft.eisbn_list=9781457700163&rft.eisbn_list=9781457700187&rft.eisbn_list=1457700182&rft_dat=%3Cieee_CHZPO%3E6059061%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c266t-a246c89cfcca3c53b92a15cce5373ff4a78585544e88e45b541f6be24ca5e3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6059061&rfr_iscdi=true |