Loading…
3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs
This paper presents a novel means of collecting and analyzing data related to personal social contact networks. The work developed a custom application for Smart phones that support Bluetooth connectivity, as representative of the ensemble of many consumer electronic products and can be used to infe...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 189 |
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Benavides, J. Demianyk, B. McLeod, R. D. Friesen, M. R. Laskowski, M. Ferens, K. Mukhi, S. N. |
description | This paper presents a novel means of collecting and analyzing data related to personal social contact networks. The work developed a custom application for Smart phones that support Bluetooth connectivity, as representative of the ensemble of many consumer electronic products and can be used to infer users' proximity, contact duration, and GPS-based information. In many cases this is augmented by device meta identity. The 3G application, data storage and retrieval is discussed in detail. Preliminary data were collected (device-device proximity, duration, and location) gathered in pilot testing on the Blackberry Storm and HTC Hero (Android). Data are presented as distributions and visualization tools for evolving contact graphs, including Pareto distributions and power law exponents generated representative of face to face contacts. Finally, data are then demonstrated to be useful in estimating the potential of infection spread (e.g. respiratory illness), where a key transmission vector is person-person contact. A variant of the standard SIR agent based model is developed, with agent contacts guided by contact distributions extracted from the data. |
doi_str_mv | 10.1109/HISB.2011.2 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6061442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6061442</ieee_id><sourcerecordid>6061442</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-786bb780bdaed0bc390951bdb6c46d5f8a9ffd709d44338b8307b95c8ae329dd3</originalsourceid><addsrcrecordid>eNotz09LwzAcxvGICOrsyaOXvIHN_GvSHHVqNxgqtPeRNL9uwZmUJCK-ewt6-ty-PA9Ct5SsKCX6frPtHleMULpiZ6jSqiFK6lqImXN0TUWtFOGsFpeoytlbwqSSUlJ9hSxvcfdpUpmOMQDuYTiGeIoHDxmPMeEWAiRTfDjgd0g5BnPCXRz8zCuU75g-8DqGYoaCn3wuyduv4mPI2ASH22SmY75BF6M5Zaj-XaD-5blfb5a7t3a7ftgtvSZlqRpp7TzcOgOO2IFromtqnZWDkK4eG6PH0SminRCcN7bhRFldD40BzrRzfIHu_rIeAPZT8vOrn70kkgrB-C_Qh1Zb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benavides, J. ; Demianyk, B. ; McLeod, R. D. ; Friesen, M. R. ; Laskowski, M. ; Ferens, K. ; Mukhi, S. N.</creator><creatorcontrib>Benavides, J. ; Demianyk, B. ; McLeod, R. D. ; Friesen, M. R. ; Laskowski, M. ; Ferens, K. ; Mukhi, S. N.</creatorcontrib><description>This paper presents a novel means of collecting and analyzing data related to personal social contact networks. The work developed a custom application for Smart phones that support Bluetooth connectivity, as representative of the ensemble of many consumer electronic products and can be used to infer users' proximity, contact duration, and GPS-based information. In many cases this is augmented by device meta identity. The 3G application, data storage and retrieval is discussed in detail. Preliminary data were collected (device-device proximity, duration, and location) gathered in pilot testing on the Blackberry Storm and HTC Hero (Android). Data are presented as distributions and visualization tools for evolving contact graphs, including Pareto distributions and power law exponents generated representative of face to face contacts. Finally, data are then demonstrated to be useful in estimating the potential of infection spread (e.g. respiratory illness), where a key transmission vector is person-person contact. A variant of the standard SIR agent based model is developed, with agent contacts guided by contact distributions extracted from the data.</description><identifier>ISBN: 1457703254</identifier><identifier>ISBN: 9781457703256</identifier><identifier>EISBN: 9780769544076</identifier><identifier>EISBN: 076954407X</identifier><identifier>DOI: 10.1109/HISB.2011.2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bluetooth ; cohort group ; contact graph ; Data models ; Data visualization ; Global Positioning System ; modeling infection spread ; Monitoring ; Organizations ; Probes ; radio frequency identification ; wireless sensor network</subject><ispartof>2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology, 2011, p.182-189</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6061442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6061442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benavides, J.</creatorcontrib><creatorcontrib>Demianyk, B.</creatorcontrib><creatorcontrib>McLeod, R. D.</creatorcontrib><creatorcontrib>Friesen, M. R.</creatorcontrib><creatorcontrib>Laskowski, M.</creatorcontrib><creatorcontrib>Ferens, K.</creatorcontrib><creatorcontrib>Mukhi, S. N.</creatorcontrib><title>3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs</title><title>2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology</title><addtitle>hisb</addtitle><description>This paper presents a novel means of collecting and analyzing data related to personal social contact networks. The work developed a custom application for Smart phones that support Bluetooth connectivity, as representative of the ensemble of many consumer electronic products and can be used to infer users' proximity, contact duration, and GPS-based information. In many cases this is augmented by device meta identity. The 3G application, data storage and retrieval is discussed in detail. Preliminary data were collected (device-device proximity, duration, and location) gathered in pilot testing on the Blackberry Storm and HTC Hero (Android). Data are presented as distributions and visualization tools for evolving contact graphs, including Pareto distributions and power law exponents generated representative of face to face contacts. Finally, data are then demonstrated to be useful in estimating the potential of infection spread (e.g. respiratory illness), where a key transmission vector is person-person contact. A variant of the standard SIR agent based model is developed, with agent contacts guided by contact distributions extracted from the data.</description><subject>Bluetooth</subject><subject>cohort group</subject><subject>contact graph</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Global Positioning System</subject><subject>modeling infection spread</subject><subject>Monitoring</subject><subject>Organizations</subject><subject>Probes</subject><subject>radio frequency identification</subject><subject>wireless sensor network</subject><isbn>1457703254</isbn><isbn>9781457703256</isbn><isbn>9780769544076</isbn><isbn>076954407X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz09LwzAcxvGICOrsyaOXvIHN_GvSHHVqNxgqtPeRNL9uwZmUJCK-ewt6-ty-PA9Ct5SsKCX6frPtHleMULpiZ6jSqiFK6lqImXN0TUWtFOGsFpeoytlbwqSSUlJ9hSxvcfdpUpmOMQDuYTiGeIoHDxmPMeEWAiRTfDjgd0g5BnPCXRz8zCuU75g-8DqGYoaCn3wuyduv4mPI2ASH22SmY75BF6M5Zaj-XaD-5blfb5a7t3a7ftgtvSZlqRpp7TzcOgOO2IFromtqnZWDkK4eG6PH0SminRCcN7bhRFldD40BzrRzfIHu_rIeAPZT8vOrn70kkgrB-C_Qh1Zb</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Benavides, J.</creator><creator>Demianyk, B.</creator><creator>McLeod, R. D.</creator><creator>Friesen, M. R.</creator><creator>Laskowski, M.</creator><creator>Ferens, K.</creator><creator>Mukhi, S. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs</title><author>Benavides, J. ; Demianyk, B. ; McLeod, R. D. ; Friesen, M. R. ; Laskowski, M. ; Ferens, K. ; Mukhi, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-786bb780bdaed0bc390951bdb6c46d5f8a9ffd709d44338b8307b95c8ae329dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bluetooth</topic><topic>cohort group</topic><topic>contact graph</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Global Positioning System</topic><topic>modeling infection spread</topic><topic>Monitoring</topic><topic>Organizations</topic><topic>Probes</topic><topic>radio frequency identification</topic><topic>wireless sensor network</topic><toplevel>online_resources</toplevel><creatorcontrib>Benavides, J.</creatorcontrib><creatorcontrib>Demianyk, B.</creatorcontrib><creatorcontrib>McLeod, R. D.</creatorcontrib><creatorcontrib>Friesen, M. R.</creatorcontrib><creatorcontrib>Laskowski, M.</creatorcontrib><creatorcontrib>Ferens, K.</creatorcontrib><creatorcontrib>Mukhi, S. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benavides, J.</au><au>Demianyk, B.</au><au>McLeod, R. D.</au><au>Friesen, M. R.</au><au>Laskowski, M.</au><au>Ferens, K.</au><au>Mukhi, S. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs</atitle><btitle>2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology</btitle><stitle>hisb</stitle><date>2011-07</date><risdate>2011</risdate><spage>182</spage><epage>189</epage><pages>182-189</pages><isbn>1457703254</isbn><isbn>9781457703256</isbn><eisbn>9780769544076</eisbn><eisbn>076954407X</eisbn><abstract>This paper presents a novel means of collecting and analyzing data related to personal social contact networks. The work developed a custom application for Smart phones that support Bluetooth connectivity, as representative of the ensemble of many consumer electronic products and can be used to infer users' proximity, contact duration, and GPS-based information. In many cases this is augmented by device meta identity. The 3G application, data storage and retrieval is discussed in detail. Preliminary data were collected (device-device proximity, duration, and location) gathered in pilot testing on the Blackberry Storm and HTC Hero (Android). Data are presented as distributions and visualization tools for evolving contact graphs, including Pareto distributions and power law exponents generated representative of face to face contacts. Finally, data are then demonstrated to be useful in estimating the potential of infection spread (e.g. respiratory illness), where a key transmission vector is person-person contact. A variant of the standard SIR agent based model is developed, with agent contacts guided by contact distributions extracted from the data.</abstract><pub>IEEE</pub><doi>10.1109/HISB.2011.2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457703254 |
ispartof | 2011 IEEE First International Conference on Healthcare Informatics, Imaging and Systems Biology, 2011, p.182-189 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6061442 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bluetooth cohort group contact graph Data models Data visualization Global Positioning System modeling infection spread Monitoring Organizations Probes radio frequency identification wireless sensor network |
title | 3G Smartphone Technologies for Generating Personal Social Network Contact Distributions and Graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=3G%20Smartphone%20Technologies%20for%20Generating%20Personal%20Social%20Network%20Contact%20Distributions%20and%20Graphs&rft.btitle=2011%20IEEE%20First%20International%20Conference%20on%20Healthcare%20Informatics,%20Imaging%20and%20Systems%20Biology&rft.au=Benavides,%20J.&rft.date=2011-07&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.isbn=1457703254&rft.isbn_list=9781457703256&rft_id=info:doi/10.1109/HISB.2011.2&rft.eisbn=9780769544076&rft.eisbn_list=076954407X&rft_dat=%3Cieee_6IE%3E6061442%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-786bb780bdaed0bc390951bdb6c46d5f8a9ffd709d44338b8307b95c8ae329dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6061442&rfr_iscdi=true |