Loading…

A block-based approach to adaptively bias the weights of adaptive filters

Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter...

Full description

Saved in:
Bibliographic Details
Main Authors: Azpicueta-Ruiz, L. A., Lazaro-Gredilla, M., Figueiras-Vidal, A. R., Arenas-Garcia, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Azpicueta-Ruiz, L. A.
Lazaro-Gredilla, M.
Figueiras-Vidal, A. R.
Arenas-Garcia, J.
description Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.
doi_str_mv 10.1109/MLSP.2011.6064609
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6064609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064609</ieee_id><sourcerecordid>6064609</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUQMcXmNZ-gLiZH0idO-9ZlmK1EFFQwV25M5mY0UhCJij9exdWV2dx4CwOIZfAlgDMXd9XT49LzgCWmmmpmTsiC2csSGUMaC74MSm4MLZ03L6ekNmfAH1KClAKSq4knJNZzu-MSS4ACrJdUd_14aP0mGNNcRjGHkNLp55ijcOUvmK3pz5hplMb6XdMb-2Uad_8a9qkbopjviBnDXY5Lg6ck5fNzfP6rqwebrfrVVUmMGoqAZUzGAyCReeZxKgCGm5YYBC0RCuZ9tJa4FD7KGLjjRQhaAMgGt94MSdXv90UY9wNY_rEcb87LBE_iiJQ7w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A block-based approach to adaptively bias the weights of adaptive filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</creator><creatorcontrib>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</creatorcontrib><description>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1457716216</identifier><identifier>ISBN: 9781457716218</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781457716232</identifier><identifier>EISBN: 1457716232</identifier><identifier>EISBN: 1457716224</identifier><identifier>EISBN: 9781457716225</identifier><identifier>DOI: 10.1109/MLSP.2011.6064609</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; biased estimation ; combination of filters ; Estimation ; Gain ; Indexes ; Proposals ; Signal to noise ratio ; sparse system identification ; Steady-state</subject><ispartof>2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6064609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azpicueta-Ruiz, L. A.</creatorcontrib><creatorcontrib>Lazaro-Gredilla, M.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Arenas-Garcia, J.</creatorcontrib><title>A block-based approach to adaptively bias the weights of adaptive filters</title><title>2011 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</description><subject>Adaptive filters</subject><subject>biased estimation</subject><subject>combination of filters</subject><subject>Estimation</subject><subject>Gain</subject><subject>Indexes</subject><subject>Proposals</subject><subject>Signal to noise ratio</subject><subject>sparse system identification</subject><subject>Steady-state</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1457716216</isbn><isbn>9781457716218</isbn><isbn>9781457716232</isbn><isbn>1457716232</isbn><isbn>1457716224</isbn><isbn>9781457716225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtKw0AUQMcXmNZ-gLiZH0idO-9ZlmK1EFFQwV25M5mY0UhCJij9exdWV2dx4CwOIZfAlgDMXd9XT49LzgCWmmmpmTsiC2csSGUMaC74MSm4MLZ03L6ekNmfAH1KClAKSq4knJNZzu-MSS4ACrJdUd_14aP0mGNNcRjGHkNLp55ijcOUvmK3pz5hplMb6XdMb-2Uad_8a9qkbopjviBnDXY5Lg6ck5fNzfP6rqwebrfrVVUmMGoqAZUzGAyCReeZxKgCGm5YYBC0RCuZ9tJa4FD7KGLjjRQhaAMgGt94MSdXv90UY9wNY_rEcb87LBE_iiJQ7w</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Azpicueta-Ruiz, L. A.</creator><creator>Lazaro-Gredilla, M.</creator><creator>Figueiras-Vidal, A. R.</creator><creator>Arenas-Garcia, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>A block-based approach to adaptively bias the weights of adaptive filters</title><author>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive filters</topic><topic>biased estimation</topic><topic>combination of filters</topic><topic>Estimation</topic><topic>Gain</topic><topic>Indexes</topic><topic>Proposals</topic><topic>Signal to noise ratio</topic><topic>sparse system identification</topic><topic>Steady-state</topic><toplevel>online_resources</toplevel><creatorcontrib>Azpicueta-Ruiz, L. A.</creatorcontrib><creatorcontrib>Lazaro-Gredilla, M.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Arenas-Garcia, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azpicueta-Ruiz, L. A.</au><au>Lazaro-Gredilla, M.</au><au>Figueiras-Vidal, A. R.</au><au>Arenas-Garcia, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A block-based approach to adaptively bias the weights of adaptive filters</atitle><btitle>2011 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1457716216</isbn><isbn>9781457716218</isbn><eisbn>9781457716232</eisbn><eisbn>1457716232</eisbn><eisbn>1457716224</eisbn><eisbn>9781457716225</eisbn><abstract>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2011.6064609</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-2541
ispartof 2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6
issn 1551-2541
2378-928X
language eng
recordid cdi_ieee_primary_6064609
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive filters
biased estimation
combination of filters
Estimation
Gain
Indexes
Proposals
Signal to noise ratio
sparse system identification
Steady-state
title A block-based approach to adaptively bias the weights of adaptive filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20block-based%20approach%20to%20adaptively%20bias%20the%20weights%20of%20adaptive%20filters&rft.btitle=2011%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Azpicueta-Ruiz,%20L.%20A.&rft.date=2011-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1457716216&rft.isbn_list=9781457716218&rft_id=info:doi/10.1109/MLSP.2011.6064609&rft.eisbn=9781457716232&rft.eisbn_list=1457716232&rft.eisbn_list=1457716224&rft.eisbn_list=9781457716225&rft_dat=%3Cieee_6IE%3E6064609%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6064609&rfr_iscdi=true