Loading…
A block-based approach to adaptively bias the weights of adaptive filters
Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Azpicueta-Ruiz, L. A. Lazaro-Gredilla, M. Figueiras-Vidal, A. R. Arenas-Garcia, J. |
description | Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance. |
doi_str_mv | 10.1109/MLSP.2011.6064609 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6064609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064609</ieee_id><sourcerecordid>6064609</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUQMcXmNZ-gLiZH0idO-9ZlmK1EFFQwV25M5mY0UhCJij9exdWV2dx4CwOIZfAlgDMXd9XT49LzgCWmmmpmTsiC2csSGUMaC74MSm4MLZ03L6ekNmfAH1KClAKSq4knJNZzu-MSS4ACrJdUd_14aP0mGNNcRjGHkNLp55ijcOUvmK3pz5hplMb6XdMb-2Uad_8a9qkbopjviBnDXY5Lg6ck5fNzfP6rqwebrfrVVUmMGoqAZUzGAyCReeZxKgCGm5YYBC0RCuZ9tJa4FD7KGLjjRQhaAMgGt94MSdXv90UY9wNY_rEcb87LBE_iiJQ7w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A block-based approach to adaptively bias the weights of adaptive filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</creator><creatorcontrib>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</creatorcontrib><description>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1457716216</identifier><identifier>ISBN: 9781457716218</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781457716232</identifier><identifier>EISBN: 1457716232</identifier><identifier>EISBN: 1457716224</identifier><identifier>EISBN: 9781457716225</identifier><identifier>DOI: 10.1109/MLSP.2011.6064609</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive filters ; biased estimation ; combination of filters ; Estimation ; Gain ; Indexes ; Proposals ; Signal to noise ratio ; sparse system identification ; Steady-state</subject><ispartof>2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064609$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6064609$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azpicueta-Ruiz, L. A.</creatorcontrib><creatorcontrib>Lazaro-Gredilla, M.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Arenas-Garcia, J.</creatorcontrib><title>A block-based approach to adaptively bias the weights of adaptive filters</title><title>2011 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</description><subject>Adaptive filters</subject><subject>biased estimation</subject><subject>combination of filters</subject><subject>Estimation</subject><subject>Gain</subject><subject>Indexes</subject><subject>Proposals</subject><subject>Signal to noise ratio</subject><subject>sparse system identification</subject><subject>Steady-state</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1457716216</isbn><isbn>9781457716218</isbn><isbn>9781457716232</isbn><isbn>1457716232</isbn><isbn>1457716224</isbn><isbn>9781457716225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtKw0AUQMcXmNZ-gLiZH0idO-9ZlmK1EFFQwV25M5mY0UhCJij9exdWV2dx4CwOIZfAlgDMXd9XT49LzgCWmmmpmTsiC2csSGUMaC74MSm4MLZ03L6ekNmfAH1KClAKSq4knJNZzu-MSS4ACrJdUd_14aP0mGNNcRjGHkNLp55ijcOUvmK3pz5hplMb6XdMb-2Uad_8a9qkbopjviBnDXY5Lg6ck5fNzfP6rqwebrfrVVUmMGoqAZUzGAyCReeZxKgCGm5YYBC0RCuZ9tJa4FD7KGLjjRQhaAMgGt94MSdXv90UY9wNY_rEcb87LBE_iiJQ7w</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Azpicueta-Ruiz, L. A.</creator><creator>Lazaro-Gredilla, M.</creator><creator>Figueiras-Vidal, A. R.</creator><creator>Arenas-Garcia, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>A block-based approach to adaptively bias the weights of adaptive filters</title><author>Azpicueta-Ruiz, L. A. ; Lazaro-Gredilla, M. ; Figueiras-Vidal, A. R. ; Arenas-Garcia, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive filters</topic><topic>biased estimation</topic><topic>combination of filters</topic><topic>Estimation</topic><topic>Gain</topic><topic>Indexes</topic><topic>Proposals</topic><topic>Signal to noise ratio</topic><topic>sparse system identification</topic><topic>Steady-state</topic><toplevel>online_resources</toplevel><creatorcontrib>Azpicueta-Ruiz, L. A.</creatorcontrib><creatorcontrib>Lazaro-Gredilla, M.</creatorcontrib><creatorcontrib>Figueiras-Vidal, A. R.</creatorcontrib><creatorcontrib>Arenas-Garcia, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azpicueta-Ruiz, L. A.</au><au>Lazaro-Gredilla, M.</au><au>Figueiras-Vidal, A. R.</au><au>Arenas-Garcia, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A block-based approach to adaptively bias the weights of adaptive filters</atitle><btitle>2011 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1457716216</isbn><isbn>9781457716218</isbn><eisbn>9781457716232</eisbn><eisbn>1457716232</eisbn><eisbn>1457716224</eisbn><eisbn>9781457716225</eisbn><abstract>Adaptive filters are crucial in many signal processing applications. Recently, a simple configuration was presented to introduce a bias in the estimation of adaptive filters using a multiplicative factor, showing important gains in terms of mean square error with respect to standard adaptive filter operation, mainly for low signal to noise ratios. In this paper, we modify that scheme to obtain further advantages by splitting the adaptive filter coefficients into non-overlapping blocks, and employing a different multiplicative factor for the coefficients in each block. In this way, bias vs variance compromise is managed independently in each block, allowing an enhancement if the energy of the unknown system is non-uniformly distributed. In order to give some insight on the behavior of the scheme, a theoretical analysis of the optimal scaling factors is developed. In addition, several sets of experiments are included to widely study the new scheme performance.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2011.6064609</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_6064609 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive filters biased estimation combination of filters Estimation Gain Indexes Proposals Signal to noise ratio sparse system identification Steady-state |
title | A block-based approach to adaptively bias the weights of adaptive filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A59%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20block-based%20approach%20to%20adaptively%20bias%20the%20weights%20of%20adaptive%20filters&rft.btitle=2011%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Azpicueta-Ruiz,%20L.%20A.&rft.date=2011-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1457716216&rft.isbn_list=9781457716218&rft_id=info:doi/10.1109/MLSP.2011.6064609&rft.eisbn=9781457716232&rft.eisbn_list=1457716232&rft.eisbn_list=1457716224&rft.eisbn_list=9781457716225&rft_dat=%3Cieee_6IE%3E6064609%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-1a597ac7a18a9b04ae5ca7270c01c64a8406b488121dbe3efb743cc67113fbfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6064609&rfr_iscdi=true |