Loading…
Optimization of average precision with Maximal Figure-of-Merit Learning
We propose an efficient algorithm to directly optimize class average precision (AP) with a Maximal Figure-of-Merit (MFoM) learning scheme. AP is considered as a staircase function with respect to each individual sample score after rank ordering is applied to all samples. A combination of sigmoid fun...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ilseo Kim Chin-Hui Lee |
description | We propose an efficient algorithm to directly optimize class average precision (AP) with a Maximal Figure-of-Merit (MFoM) learning scheme. AP is considered as a staircase function with respect to each individual sample score after rank ordering is applied to all samples. A combination of sigmoid functions is then used to approximate AP as a continuously differentiable function of the classified parameters used to compute the sample scores. Compared to pair-wise ranking comparisons, the computational complexity of the proposed MFoM-AP learning algorithm can be substantially reduced when estimating classifier parameters with a gradient descent algorithm. Experiments on the TRECVID 2005 high-level feature extraction task showed that the proposed algorithm can effectively improve the mean average precision (MAP) over 39 concepts from a baseline performance of 0.4039 with MFoM maximizing F1 to 0.4274 with MFoM-AP, while showing significant impromvements for 12 concepts as more than 10%. |
doi_str_mv | 10.1109/MLSP.2011.6064638 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6064638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6064638</ieee_id><sourcerecordid>6064638</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-63e9ee8fa5a368bad6f60d003ef5887a7fab49fcc479055a72e44600a9ff247e3</originalsourceid><addsrcrecordid>eNo1kMlKA0EURcsJTGI-QNz0D1SsV3MtJZgodIiggrvw0nnVlmRoqtvx61WMqwv3wOVwGTsHMQIQ4XJW3t-NpAAYWWG1Vf6ADYPzoI1zYKWSh6wnlfM8SP90xPr_AOwx64ExwKXRcMr6bfsihJYKoMem86ZLm_SFXdpti10s8I0y1lQ0marU_pbvqXsuZviRNrguJql-zcR3kc8op64oCfM2beszdhJx3dJwnwP2OLl-GN_wcj69HV-VPIEzHbeKApGPaFBZv8SVjVashFAUjfcOXcSlDrGqtAvCGHSStLZCYIhRakdqwC7-dhMRLZr8I5U_F_tD1DdJYFC5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of average precision with Maximal Figure-of-Merit Learning</title><source>IEEE Xplore All Conference Series</source><creator>Ilseo Kim ; Chin-Hui Lee</creator><creatorcontrib>Ilseo Kim ; Chin-Hui Lee</creatorcontrib><description>We propose an efficient algorithm to directly optimize class average precision (AP) with a Maximal Figure-of-Merit (MFoM) learning scheme. AP is considered as a staircase function with respect to each individual sample score after rank ordering is applied to all samples. A combination of sigmoid functions is then used to approximate AP as a continuously differentiable function of the classified parameters used to compute the sample scores. Compared to pair-wise ranking comparisons, the computational complexity of the proposed MFoM-AP learning algorithm can be substantially reduced when estimating classifier parameters with a gradient descent algorithm. Experiments on the TRECVID 2005 high-level feature extraction task showed that the proposed algorithm can effectively improve the mean average precision (MAP) over 39 concepts from a baseline performance of 0.4039 with MFoM maximizing F1 to 0.4274 with MFoM-AP, while showing significant impromvements for 12 concepts as more than 10%.</description><identifier>ISSN: 1551-2541</identifier><identifier>ISBN: 1457716216</identifier><identifier>ISBN: 9781457716218</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9781457716232</identifier><identifier>EISBN: 1457716232</identifier><identifier>EISBN: 1457716224</identifier><identifier>EISBN: 9781457716225</identifier><identifier>DOI: 10.1109/MLSP.2011.6064638</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Approximation methods ; automatic image annotation ; average precision ; Computational modeling ; high-level image feature extraction ; Manganese ; Measurement ; MFoM ; Optimization ; rank statistics ; Training</subject><ispartof>2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6064638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6064638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ilseo Kim</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><title>Optimization of average precision with Maximal Figure-of-Merit Learning</title><title>2011 IEEE International Workshop on Machine Learning for Signal Processing</title><addtitle>MLSP</addtitle><description>We propose an efficient algorithm to directly optimize class average precision (AP) with a Maximal Figure-of-Merit (MFoM) learning scheme. AP is considered as a staircase function with respect to each individual sample score after rank ordering is applied to all samples. A combination of sigmoid functions is then used to approximate AP as a continuously differentiable function of the classified parameters used to compute the sample scores. Compared to pair-wise ranking comparisons, the computational complexity of the proposed MFoM-AP learning algorithm can be substantially reduced when estimating classifier parameters with a gradient descent algorithm. Experiments on the TRECVID 2005 high-level feature extraction task showed that the proposed algorithm can effectively improve the mean average precision (MAP) over 39 concepts from a baseline performance of 0.4039 with MFoM maximizing F1 to 0.4274 with MFoM-AP, while showing significant impromvements for 12 concepts as more than 10%.</description><subject>Approximation algorithms</subject><subject>Approximation methods</subject><subject>automatic image annotation</subject><subject>average precision</subject><subject>Computational modeling</subject><subject>high-level image feature extraction</subject><subject>Manganese</subject><subject>Measurement</subject><subject>MFoM</subject><subject>Optimization</subject><subject>rank statistics</subject><subject>Training</subject><issn>1551-2541</issn><issn>2378-928X</issn><isbn>1457716216</isbn><isbn>9781457716218</isbn><isbn>9781457716232</isbn><isbn>1457716232</isbn><isbn>1457716224</isbn><isbn>9781457716225</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMlKA0EURcsJTGI-QNz0D1SsV3MtJZgodIiggrvw0nnVlmRoqtvx61WMqwv3wOVwGTsHMQIQ4XJW3t-NpAAYWWG1Vf6ADYPzoI1zYKWSh6wnlfM8SP90xPr_AOwx64ExwKXRcMr6bfsihJYKoMem86ZLm_SFXdpti10s8I0y1lQ0marU_pbvqXsuZviRNrguJql-zcR3kc8op64oCfM2beszdhJx3dJwnwP2OLl-GN_wcj69HV-VPIEzHbeKApGPaFBZv8SVjVashFAUjfcOXcSlDrGqtAvCGHSStLZCYIhRakdqwC7-dhMRLZr8I5U_F_tD1DdJYFC5</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Ilseo Kim</creator><creator>Chin-Hui Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Optimization of average precision with Maximal Figure-of-Merit Learning</title><author>Ilseo Kim ; Chin-Hui Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-63e9ee8fa5a368bad6f60d003ef5887a7fab49fcc479055a72e44600a9ff247e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation algorithms</topic><topic>Approximation methods</topic><topic>automatic image annotation</topic><topic>average precision</topic><topic>Computational modeling</topic><topic>high-level image feature extraction</topic><topic>Manganese</topic><topic>Measurement</topic><topic>MFoM</topic><topic>Optimization</topic><topic>rank statistics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ilseo Kim</creatorcontrib><creatorcontrib>Chin-Hui Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ilseo Kim</au><au>Chin-Hui Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of average precision with Maximal Figure-of-Merit Learning</atitle><btitle>2011 IEEE International Workshop on Machine Learning for Signal Processing</btitle><stitle>MLSP</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1551-2541</issn><eissn>2378-928X</eissn><isbn>1457716216</isbn><isbn>9781457716218</isbn><eisbn>9781457716232</eisbn><eisbn>1457716232</eisbn><eisbn>1457716224</eisbn><eisbn>9781457716225</eisbn><abstract>We propose an efficient algorithm to directly optimize class average precision (AP) with a Maximal Figure-of-Merit (MFoM) learning scheme. AP is considered as a staircase function with respect to each individual sample score after rank ordering is applied to all samples. A combination of sigmoid functions is then used to approximate AP as a continuously differentiable function of the classified parameters used to compute the sample scores. Compared to pair-wise ranking comparisons, the computational complexity of the proposed MFoM-AP learning algorithm can be substantially reduced when estimating classifier parameters with a gradient descent algorithm. Experiments on the TRECVID 2005 high-level feature extraction task showed that the proposed algorithm can effectively improve the mean average precision (MAP) over 39 concepts from a baseline performance of 0.4039 with MFoM maximizing F1 to 0.4274 with MFoM-AP, while showing significant impromvements for 12 concepts as more than 10%.</abstract><pub>IEEE</pub><doi>10.1109/MLSP.2011.6064638</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-2541 |
ispartof | 2011 IEEE International Workshop on Machine Learning for Signal Processing, 2011, p.1-6 |
issn | 1551-2541 2378-928X |
language | eng |
recordid | cdi_ieee_primary_6064638 |
source | IEEE Xplore All Conference Series |
subjects | Approximation algorithms Approximation methods automatic image annotation average precision Computational modeling high-level image feature extraction Manganese Measurement MFoM Optimization rank statistics Training |
title | Optimization of average precision with Maximal Figure-of-Merit Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20average%20precision%20with%20Maximal%20Figure-of-Merit%20Learning&rft.btitle=2011%20IEEE%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing&rft.au=Ilseo%20Kim&rft.date=2011-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1551-2541&rft.eissn=2378-928X&rft.isbn=1457716216&rft.isbn_list=9781457716218&rft_id=info:doi/10.1109/MLSP.2011.6064638&rft.eisbn=9781457716232&rft.eisbn_list=1457716232&rft.eisbn_list=1457716224&rft.eisbn_list=9781457716225&rft_dat=%3Cieee_CHZPO%3E6064638%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-63e9ee8fa5a368bad6f60d003ef5887a7fab49fcc479055a72e44600a9ff247e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6064638&rfr_iscdi=true |