Loading…

Study on the adhesion strength of new nano-structured polymer-metal composite for thermal interface material (Nano-TIM) under different pressures

With the continual increase in cooling demand for microprocessors, the microelectronics industry has been increasingly focused on the development of thermal solutions. Thermal Interface Material (TIM) plays a key role in reducing the thermal resistance of packaging and the thermal resistance between...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Zhang, Xiuzhen Lu, Xin Luo, Carlberg, B., Zandira, M., Lilei Ye, Liu, J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the continual increase in cooling demand for microprocessors, the microelectronics industry has been increasingly focused on the development of thermal solutions. Thermal Interface Material (TIM) plays a key role in reducing the thermal resistance of packaging and the thermal resistance between the electronic device and the external cooling components. Nano-TIM, a new type of thermal interface material, was developed to improve the heat dissipation of electronic devices. This paper describes work undertaken to research the reliability of Nano-TIM. Pull tests were used to investigate the shear strength of samples with Nano-TIM of different thicknesses coalesced between two PCBs with Sn coating made under different pressure. Scanning Electron Microscopy (SEM) analysis techniques were used to determine the morphology of the shear fracture section after pull tests and observe the structure of the cross section of Nano-TIM coalesced between two PCBs with Sn coating.
DOI:10.1109/ICEPT.2011.6066869