Loading…
Performance Evaluation of Peak-to-Average Power Ratio Reduction and Digital Pre-Distortion for OFDM Based Systems
In this paper, we evaluate the effect of applying peak-to-average power ratio (PAPR) reduction and digital pre-distortion (DPD) on two types of radio frequency power amplifiers when an orthogonal frequency division multiplexing (OFDM) signal is used. The power amplifiers under test are a standard cl...
Saved in:
Published in: | IEEE transactions on microwave theory and techniques 2011-12, Vol.59 (12), p.3504-3511 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we evaluate the effect of applying peak-to-average power ratio (PAPR) reduction and digital pre-distortion (DPD) on two types of radio frequency power amplifiers when an orthogonal frequency division multiplexing (OFDM) signal is used. The power amplifiers under test are a standard class-AB amplifier and a Doherty amplifier. The PAPR reduction methods are based on a state-of-the art convex optimization formulation and on the standard clipping and filtering technique. The DPD method consists of modeling the behavior of the power amplifier using a parallel Hammerstein model, and then extracting the inverse parameters based on the indirect learning architecture. To achieve better DPD performance, extracting the DPD parameters based on multiple-step iterations is investigated. The cases where PAPR reduction and DPD are applied separately and combined are studied and investigated. Power amplifier figures of merit are evaluated. Good performance is shown when combining both pre-processing techniques up to a certain operating point where DPD performance deteriorates due to generation of strong peaks in the signal. In addition, a difference in the power amplifier behavior is reported and analyzed. |
---|---|
ISSN: | 0018-9480 1557-9670 1557-9670 |
DOI: | 10.1109/TMTT.2011.2170583 |