Loading…
Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System
A gas-gap thermal switch is developed to reduce the cool-down time of conduction cooled superconducting magnet. The main feature of the thermal switch is that it is sealed naturally at atmospheric environment in comparison with other gas-gap thermal switch, thereby it is much greater convenient duri...
Saved in:
Published in: | IEEE transactions on applied superconductivity 2012-06, Vol.22 (3), p.4700904-4700904 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23 |
container_end_page | 4700904 |
container_issue | 3 |
container_start_page | 4700904 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 22 |
creator | Zhao, Baozhi Wang, Qiuliang Li, Lankai Liu, Haoyang Chen, Shunzhong Dai, Yinming Lei, Yuanzhong Wang, Hui Ni, Zhipeng |
description | A gas-gap thermal switch is developed to reduce the cool-down time of conduction cooled superconducting magnet. The main feature of the thermal switch is that it is sealed naturally at atmospheric environment in comparison with other gas-gap thermal switch, thereby it is much greater convenient during assembly. The switch is a closed container that contains several pairs of concentric tube-fins arranged in staggered way and it is located between first stage and second stage of GM cryocooler. At the beginning of the cool down, the thermal switch can transfer power from the first stage with the higher refrigeration capacity to the magnet. So the cool-down rate of the magnet is increased. To check the performance of the switch, we use a superconducting magnet for gyrotron whose weight is 41.5 kg as background device. The experiment shows that the cool-down time is shortened from 25 hours to 20 hours. |
doi_str_mv | 10.1109/TASC.2011.2174556 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6069571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6069571</ieee_id><sourcerecordid>1365156695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIsoOKd_gHgJiOClMy9p0vY4ik5hotB5LulbunV0TU1aZP-9mRs7eHq_vvd4fEFwC3QCQNOnxTTPJowCTBjEkRDyLBiBEEnIBIhzn1MBYcIYvwyunNtQClESiVFQflqFfY2qIdOua3zS16YlpiIz5cKZ6shire3Wj_Ofusc1qVuSmXY54B-XGdPoJcmHTls8ttsVeVerVvck37leb6-Di0o1Tt8c4zj4enleZK_h_GP2lk3nIXIh-zCmFXCBccRpCshRIEs4RxSRljRhUAKTCL6OhWAJlVImClJexigjUZaMj4PHw93Omu9Bu77Y1g5106hWm8EVwKV3IWUqPHr_D92Ywbb-uwKot5jwlEWeggOF1jhndVV0tt4qu_NQsbde7K0Xe-vF0brfeTheVs5LraxqsXanRSZlJClLPXd34Gqt9Wksqf8uBv4LpHaI1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020183924</pqid></control><display><type>article</type><title>Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Baozhi ; Wang, Qiuliang ; Li, Lankai ; Liu, Haoyang ; Chen, Shunzhong ; Dai, Yinming ; Lei, Yuanzhong ; Wang, Hui ; Ni, Zhipeng</creator><creatorcontrib>Zhao, Baozhi ; Wang, Qiuliang ; Li, Lankai ; Liu, Haoyang ; Chen, Shunzhong ; Dai, Yinming ; Lei, Yuanzhong ; Wang, Hui ; Ni, Zhipeng</creatorcontrib><description>A gas-gap thermal switch is developed to reduce the cool-down time of conduction cooled superconducting magnet. The main feature of the thermal switch is that it is sealed naturally at atmospheric environment in comparison with other gas-gap thermal switch, thereby it is much greater convenient during assembly. The switch is a closed container that contains several pairs of concentric tube-fins arranged in staggered way and it is located between first stage and second stage of GM cryocooler. At the beginning of the cool down, the thermal switch can transfer power from the first stage with the higher refrigeration capacity to the magnet. So the cool-down rate of the magnet is increased. To check the performance of the switch, we use a superconducting magnet for gyrotron whose weight is 41.5 kg as background device. The experiment shows that the cool-down time is shortened from 25 hours to 20 hours.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2011.2174556</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Assembly ; Circuit properties ; Coils ; Conduction cooled superconducting magnet ; Conduction cooling ; Connection and protection apparatus ; Devices ; Electric, optical and optoelectronic circuits ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronic circuits ; Electronic tubes, masers ; Electronics ; Exact sciences and technology ; G-M cryocooler ; Gyrotrons ; Heat transfer ; Magnetic noise ; Magnetic shielding ; Magnetism ; Refrigeration ; Refrigerators ; Superconducting magnets ; Superconductivity ; Switches ; Switching, multiplexing, switched capacity circuits ; thermal switch ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2012-06, Vol.22 (3), p.4700904-4700904</ispartof><rights>2014 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23</citedby><cites>FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6069571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26646029$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Baozhi</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Li, Lankai</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Ni, Zhipeng</creatorcontrib><title>Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>A gas-gap thermal switch is developed to reduce the cool-down time of conduction cooled superconducting magnet. The main feature of the thermal switch is that it is sealed naturally at atmospheric environment in comparison with other gas-gap thermal switch, thereby it is much greater convenient during assembly. The switch is a closed container that contains several pairs of concentric tube-fins arranged in staggered way and it is located between first stage and second stage of GM cryocooler. At the beginning of the cool down, the thermal switch can transfer power from the first stage with the higher refrigeration capacity to the magnet. So the cool-down rate of the magnet is increased. To check the performance of the switch, we use a superconducting magnet for gyrotron whose weight is 41.5 kg as background device. The experiment shows that the cool-down time is shortened from 25 hours to 20 hours.</description><subject>Applied sciences</subject><subject>Assembly</subject><subject>Circuit properties</subject><subject>Coils</subject><subject>Conduction cooled superconducting magnet</subject><subject>Conduction cooling</subject><subject>Connection and protection apparatus</subject><subject>Devices</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronic circuits</subject><subject>Electronic tubes, masers</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>G-M cryocooler</subject><subject>Gyrotrons</subject><subject>Heat transfer</subject><subject>Magnetic noise</subject><subject>Magnetic shielding</subject><subject>Magnetism</subject><subject>Refrigeration</subject><subject>Refrigerators</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Switches</subject><subject>Switching, multiplexing, switched capacity circuits</subject><subject>thermal switch</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUgIsoOKd_gHgJiOClMy9p0vY4ik5hotB5LulbunV0TU1aZP-9mRs7eHq_vvd4fEFwC3QCQNOnxTTPJowCTBjEkRDyLBiBEEnIBIhzn1MBYcIYvwyunNtQClESiVFQflqFfY2qIdOua3zS16YlpiIz5cKZ6shire3Wj_Ofusc1qVuSmXY54B-XGdPoJcmHTls8ttsVeVerVvck37leb6-Di0o1Tt8c4zj4enleZK_h_GP2lk3nIXIh-zCmFXCBccRpCshRIEs4RxSRljRhUAKTCL6OhWAJlVImClJexigjUZaMj4PHw93Omu9Bu77Y1g5106hWm8EVwKV3IWUqPHr_D92Ywbb-uwKot5jwlEWeggOF1jhndVV0tt4qu_NQsbde7K0Xe-vF0brfeTheVs5LraxqsXanRSZlJClLPXd34Gqt9Wksqf8uBv4LpHaI1A</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Zhao, Baozhi</creator><creator>Wang, Qiuliang</creator><creator>Li, Lankai</creator><creator>Liu, Haoyang</creator><creator>Chen, Shunzhong</creator><creator>Dai, Yinming</creator><creator>Lei, Yuanzhong</creator><creator>Wang, Hui</creator><creator>Ni, Zhipeng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120601</creationdate><title>Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System</title><author>Zhao, Baozhi ; Wang, Qiuliang ; Li, Lankai ; Liu, Haoyang ; Chen, Shunzhong ; Dai, Yinming ; Lei, Yuanzhong ; Wang, Hui ; Ni, Zhipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Assembly</topic><topic>Circuit properties</topic><topic>Coils</topic><topic>Conduction cooled superconducting magnet</topic><topic>Conduction cooling</topic><topic>Connection and protection apparatus</topic><topic>Devices</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronic circuits</topic><topic>Electronic tubes, masers</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>G-M cryocooler</topic><topic>Gyrotrons</topic><topic>Heat transfer</topic><topic>Magnetic noise</topic><topic>Magnetic shielding</topic><topic>Magnetism</topic><topic>Refrigeration</topic><topic>Refrigerators</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Switches</topic><topic>Switching, multiplexing, switched capacity circuits</topic><topic>thermal switch</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Baozhi</creatorcontrib><creatorcontrib>Wang, Qiuliang</creatorcontrib><creatorcontrib>Li, Lankai</creatorcontrib><creatorcontrib>Liu, Haoyang</creatorcontrib><creatorcontrib>Chen, Shunzhong</creatorcontrib><creatorcontrib>Dai, Yinming</creatorcontrib><creatorcontrib>Lei, Yuanzhong</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Ni, Zhipeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Baozhi</au><au>Wang, Qiuliang</au><au>Li, Lankai</au><au>Liu, Haoyang</au><au>Chen, Shunzhong</au><au>Dai, Yinming</au><au>Lei, Yuanzhong</au><au>Wang, Hui</au><au>Ni, Zhipeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>4700904</spage><epage>4700904</epage><pages>4700904-4700904</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>A gas-gap thermal switch is developed to reduce the cool-down time of conduction cooled superconducting magnet. The main feature of the thermal switch is that it is sealed naturally at atmospheric environment in comparison with other gas-gap thermal switch, thereby it is much greater convenient during assembly. The switch is a closed container that contains several pairs of concentric tube-fins arranged in staggered way and it is located between first stage and second stage of GM cryocooler. At the beginning of the cool down, the thermal switch can transfer power from the first stage with the higher refrigeration capacity to the magnet. So the cool-down rate of the magnet is increased. To check the performance of the switch, we use a superconducting magnet for gyrotron whose weight is 41.5 kg as background device. The experiment shows that the cool-down time is shortened from 25 hours to 20 hours.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2011.2174556</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2012-06, Vol.22 (3), p.4700904-4700904 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_6069571 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Assembly Circuit properties Coils Conduction cooled superconducting magnet Conduction cooling Connection and protection apparatus Devices Electric, optical and optoelectronic circuits Electrical engineering. Electrical power engineering Electromagnets Electronic circuits Electronic tubes, masers Electronics Exact sciences and technology G-M cryocooler Gyrotrons Heat transfer Magnetic noise Magnetic shielding Magnetism Refrigeration Refrigerators Superconducting magnets Superconductivity Switches Switching, multiplexing, switched capacity circuits thermal switch Various equipment and components |
title | Practical Application of Gas-Gap Thermal Switch in Conduction Cooled Superconducting Magnet System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20Application%20of%20Gas-Gap%20Thermal%20Switch%20in%20Conduction%20Cooled%20Superconducting%20Magnet%20System&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Zhao,%20Baozhi&rft.date=2012-06-01&rft.volume=22&rft.issue=3&rft.spage=4700904&rft.epage=4700904&rft.pages=4700904-4700904&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2011.2174556&rft_dat=%3Cproquest_ieee_%3E1365156695%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-70f135c743091c3c5c2833cc54e60821b126c1cc57552806668a193b7c645bb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020183924&rft_id=info:pmid/&rft_ieee_id=6069571&rfr_iscdi=true |