Loading…
Camera pose estimation using particle filters
In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose esti...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Herranz, F. Muthukrishnan, K. Langendoen, K. |
description | In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation. |
doi_str_mv | 10.1109/IPIN.2011.6071919 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6071919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071919</ieee_id><sourcerecordid>6071919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103</originalsourceid><addsrcrecordid>eNo1j81KxDAUhSMiqGMfQNzkBVpz89sspahTGNSFroc0uZFIZ6YkceHbO-B4Nodvc_gOIbfAOgBm78e38aXjDKDTzIAFe0Yaa3qQyhjomejPyfU_KHNJmlK-2DFaW87ZFWkHt8Ps6HIoSLHUtHM1Hfb0u6T9J11crsnPSGOaK-ZyQy6imws2p16Rj6fH92Hdbl6fx-Fh0yYwqra9jKD95BVKK7j0OkYbUWs0SgY2STBWcu1BhInpoJztjVNBBQlKgAcmVuTubzch4nbJR6v8sz09FL-jskM9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Camera pose estimation using particle filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</creator><creatorcontrib>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</creatorcontrib><description>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</description><identifier>ISBN: 1457718057</identifier><identifier>ISBN: 9781457718052</identifier><identifier>EISBN: 9781457718038</identifier><identifier>EISBN: 1457718030</identifier><identifier>EISBN: 9781457718045</identifier><identifier>EISBN: 1457718049</identifier><identifier>DOI: 10.1109/IPIN.2011.6071919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Cameras ; Estimation ; Light emitting diodes ; Particle measurements ; Vectors ; Wireless sensor networks</subject><ispartof>2011 International Conference on Indoor Positioning and Indoor Navigation, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6071919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herranz, F.</creatorcontrib><creatorcontrib>Muthukrishnan, K.</creatorcontrib><creatorcontrib>Langendoen, K.</creatorcontrib><title>Camera pose estimation using particle filters</title><title>2011 International Conference on Indoor Positioning and Indoor Navigation</title><addtitle>IPIN</addtitle><description>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</description><subject>Atmospheric measurements</subject><subject>Cameras</subject><subject>Estimation</subject><subject>Light emitting diodes</subject><subject>Particle measurements</subject><subject>Vectors</subject><subject>Wireless sensor networks</subject><isbn>1457718057</isbn><isbn>9781457718052</isbn><isbn>9781457718038</isbn><isbn>1457718030</isbn><isbn>9781457718045</isbn><isbn>1457718049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAUhSMiqGMfQNzkBVpz89sspahTGNSFroc0uZFIZ6YkceHbO-B4Nodvc_gOIbfAOgBm78e38aXjDKDTzIAFe0Yaa3qQyhjomejPyfU_KHNJmlK-2DFaW87ZFWkHt8Ps6HIoSLHUtHM1Hfb0u6T9J11crsnPSGOaK-ZyQy6imws2p16Rj6fH92Hdbl6fx-Fh0yYwqra9jKD95BVKK7j0OkYbUWs0SgY2STBWcu1BhInpoJztjVNBBQlKgAcmVuTubzch4nbJR6v8sz09FL-jskM9</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Herranz, F.</creator><creator>Muthukrishnan, K.</creator><creator>Langendoen, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Camera pose estimation using particle filters</title><author>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric measurements</topic><topic>Cameras</topic><topic>Estimation</topic><topic>Light emitting diodes</topic><topic>Particle measurements</topic><topic>Vectors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Herranz, F.</creatorcontrib><creatorcontrib>Muthukrishnan, K.</creatorcontrib><creatorcontrib>Langendoen, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herranz, F.</au><au>Muthukrishnan, K.</au><au>Langendoen, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Camera pose estimation using particle filters</atitle><btitle>2011 International Conference on Indoor Positioning and Indoor Navigation</btitle><stitle>IPIN</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1457718057</isbn><isbn>9781457718052</isbn><eisbn>9781457718038</eisbn><eisbn>1457718030</eisbn><eisbn>9781457718045</eisbn><eisbn>1457718049</eisbn><abstract>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</abstract><pub>IEEE</pub><doi>10.1109/IPIN.2011.6071919</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457718057 |
ispartof | 2011 International Conference on Indoor Positioning and Indoor Navigation, 2011, p.1-8 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6071919 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Atmospheric measurements Cameras Estimation Light emitting diodes Particle measurements Vectors Wireless sensor networks |
title | Camera pose estimation using particle filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Camera%20pose%20estimation%20using%20particle%20filters&rft.btitle=2011%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation&rft.au=Herranz,%20F.&rft.date=2011-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1457718057&rft.isbn_list=9781457718052&rft_id=info:doi/10.1109/IPIN.2011.6071919&rft.eisbn=9781457718038&rft.eisbn_list=1457718030&rft.eisbn_list=9781457718045&rft.eisbn_list=1457718049&rft_dat=%3Cieee_6IE%3E6071919%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6071919&rfr_iscdi=true |