Loading…

Camera pose estimation using particle filters

In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose esti...

Full description

Saved in:
Bibliographic Details
Main Authors: Herranz, F., Muthukrishnan, K., Langendoen, K.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Herranz, F.
Muthukrishnan, K.
Langendoen, K.
description In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.
doi_str_mv 10.1109/IPIN.2011.6071919
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6071919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6071919</ieee_id><sourcerecordid>6071919</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103</originalsourceid><addsrcrecordid>eNo1j81KxDAUhSMiqGMfQNzkBVpz89sspahTGNSFroc0uZFIZ6YkceHbO-B4Nodvc_gOIbfAOgBm78e38aXjDKDTzIAFe0Yaa3qQyhjomejPyfU_KHNJmlK-2DFaW87ZFWkHt8Ps6HIoSLHUtHM1Hfb0u6T9J11crsnPSGOaK-ZyQy6imws2p16Rj6fH92Hdbl6fx-Fh0yYwqra9jKD95BVKK7j0OkYbUWs0SgY2STBWcu1BhInpoJztjVNBBQlKgAcmVuTubzch4nbJR6v8sz09FL-jskM9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Camera pose estimation using particle filters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</creator><creatorcontrib>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</creatorcontrib><description>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</description><identifier>ISBN: 1457718057</identifier><identifier>ISBN: 9781457718052</identifier><identifier>EISBN: 9781457718038</identifier><identifier>EISBN: 1457718030</identifier><identifier>EISBN: 9781457718045</identifier><identifier>EISBN: 1457718049</identifier><identifier>DOI: 10.1109/IPIN.2011.6071919</identifier><language>eng</language><publisher>IEEE</publisher><subject>Atmospheric measurements ; Cameras ; Estimation ; Light emitting diodes ; Particle measurements ; Vectors ; Wireless sensor networks</subject><ispartof>2011 International Conference on Indoor Positioning and Indoor Navigation, 2011, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6071919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6071919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Herranz, F.</creatorcontrib><creatorcontrib>Muthukrishnan, K.</creatorcontrib><creatorcontrib>Langendoen, K.</creatorcontrib><title>Camera pose estimation using particle filters</title><title>2011 International Conference on Indoor Positioning and Indoor Navigation</title><addtitle>IPIN</addtitle><description>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</description><subject>Atmospheric measurements</subject><subject>Cameras</subject><subject>Estimation</subject><subject>Light emitting diodes</subject><subject>Particle measurements</subject><subject>Vectors</subject><subject>Wireless sensor networks</subject><isbn>1457718057</isbn><isbn>9781457718052</isbn><isbn>9781457718038</isbn><isbn>1457718030</isbn><isbn>9781457718045</isbn><isbn>1457718049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KxDAUhSMiqGMfQNzkBVpz89sspahTGNSFroc0uZFIZ6YkceHbO-B4Nodvc_gOIbfAOgBm78e38aXjDKDTzIAFe0Yaa3qQyhjomejPyfU_KHNJmlK-2DFaW87ZFWkHt8Ps6HIoSLHUtHM1Hfb0u6T9J11crsnPSGOaK-ZyQy6imws2p16Rj6fH92Hdbl6fx-Fh0yYwqra9jKD95BVKK7j0OkYbUWs0SgY2STBWcu1BhInpoJztjVNBBQlKgAcmVuTubzch4nbJR6v8sz09FL-jskM9</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Herranz, F.</creator><creator>Muthukrishnan, K.</creator><creator>Langendoen, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Camera pose estimation using particle filters</title><author>Herranz, F. ; Muthukrishnan, K. ; Langendoen, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric measurements</topic><topic>Cameras</topic><topic>Estimation</topic><topic>Light emitting diodes</topic><topic>Particle measurements</topic><topic>Vectors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Herranz, F.</creatorcontrib><creatorcontrib>Muthukrishnan, K.</creatorcontrib><creatorcontrib>Langendoen, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Herranz, F.</au><au>Muthukrishnan, K.</au><au>Langendoen, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Camera pose estimation using particle filters</atitle><btitle>2011 International Conference on Indoor Positioning and Indoor Navigation</btitle><stitle>IPIN</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1457718057</isbn><isbn>9781457718052</isbn><eisbn>9781457718038</eisbn><eisbn>1457718030</eisbn><eisbn>9781457718045</eisbn><eisbn>1457718049</eisbn><abstract>In this paper we propose a pose estimation algorithm based on Particle filtering which uses LED sightings gathered from wireless sensor nodes (WSN) to estimate the pose of the camera. The LEDs act as (visual) markers for our pose estimation algorithm. We also compare the performance of our pose estimation algorithm against two reference algorithms - (i) Extended Kalman filtering (EKF) and (ii) Discrete Linear Transform (DLT) based approaches. The performance of all the three algorithms are evaluated for different camera frame rates, varying level of measurement noise and for different marker distribution. Our results (small-scale experimental and room-level simulation studies) show that the particle filtering algorithm gives an accuracy of a few millimetres in position and a few degrees in orientation.</abstract><pub>IEEE</pub><doi>10.1109/IPIN.2011.6071919</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457718057
ispartof 2011 International Conference on Indoor Positioning and Indoor Navigation, 2011, p.1-8
issn
language eng
recordid cdi_ieee_primary_6071919
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Atmospheric measurements
Cameras
Estimation
Light emitting diodes
Particle measurements
Vectors
Wireless sensor networks
title Camera pose estimation using particle filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Camera%20pose%20estimation%20using%20particle%20filters&rft.btitle=2011%20International%20Conference%20on%20Indoor%20Positioning%20and%20Indoor%20Navigation&rft.au=Herranz,%20F.&rft.date=2011-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1457718057&rft.isbn_list=9781457718052&rft_id=info:doi/10.1109/IPIN.2011.6071919&rft.eisbn=9781457718038&rft.eisbn_list=1457718030&rft.eisbn_list=9781457718045&rft.eisbn_list=1457718049&rft_dat=%3Cieee_6IE%3E6071919%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-84f16cbc5e49324c6ff9fe66e754d0b4179426c13db06d5a987a5d5d41531c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6071919&rfr_iscdi=true