Loading…
Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control
Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Cao Rongmin Zhou Huixing Hou Zhongsheng Wu Yingnian |
description | Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method. |
doi_str_mv | 10.1109/ICEMS.2011.6073732 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6073732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6073732</ieee_id><sourcerecordid>6073732</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0QEgj6A3DxD6R468SOj6gqUKmIA71Xjr1pjRI7sg2oZ34cI3phD7uamac5LCG3wOYATN2vl6uXt_mCAcwFk1zyxRmZKdlC3UgJrObt-T9dN5dkltI7KyOEAgVX5HsTvqo0IVo6YexDHLU3SCMm1NEcaHF-g-Kiz3TUe4-ZpqM3hxh8-Eh0cL6QdAy5kJ1OpSh46oOfdNQj5uhMCS0OdCicd35PtdVTdp9ITfA5huGGXPR6SDg73WuyfVxtl8_V5vVpvXzYVE6xXNVayLY1ixobBYLVDXQdCBBW9W3f2bKM0NJ0YMB03DQSpJWqFYx3Fqw2_Jrc_dU6RNxN0Y06Hnenz_EfEZ9l3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</creator><creatorcontrib>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</creatorcontrib><description>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</description><identifier>ISBN: 9781457710445</identifier><identifier>ISBN: 1457710447</identifier><identifier>EISBN: 9781457710438</identifier><identifier>EISBN: 1457710439</identifier><identifier>EISBN: 1457710420</identifier><identifier>EISBN: 9781457710421</identifier><identifier>DOI: 10.1109/ICEMS.2011.6073732</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Force ; Friction ; Mathematical model ; Permanent magnet motors ; Prediction algorithms</subject><ispartof>2011 International Conference on Electrical Machines and Systems, 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6073732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6073732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhou Huixing</creatorcontrib><creatorcontrib>Hou Zhongsheng</creatorcontrib><creatorcontrib>Wu Yingnian</creatorcontrib><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><title>2011 International Conference on Electrical Machines and Systems</title><addtitle>ICEMS</addtitle><description>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Force</subject><subject>Friction</subject><subject>Mathematical model</subject><subject>Permanent magnet motors</subject><subject>Prediction algorithms</subject><isbn>9781457710445</isbn><isbn>1457710447</isbn><isbn>9781457710438</isbn><isbn>1457710439</isbn><isbn>1457710420</isbn><isbn>9781457710421</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMFOwzAQRI0QEgj6A3DxD6R468SOj6gqUKmIA71Xjr1pjRI7sg2oZ34cI3phD7uamac5LCG3wOYATN2vl6uXt_mCAcwFk1zyxRmZKdlC3UgJrObt-T9dN5dkltI7KyOEAgVX5HsTvqo0IVo6YexDHLU3SCMm1NEcaHF-g-Kiz3TUe4-ZpqM3hxh8-Eh0cL6QdAy5kJ1OpSh46oOfdNQj5uhMCS0OdCicd35PtdVTdp9ITfA5huGGXPR6SDg73WuyfVxtl8_V5vVpvXzYVE6xXNVayLY1ixobBYLVDXQdCBBW9W3f2bKM0NJ0YMB03DQSpJWqFYx3Fqw2_Jrc_dU6RNxN0Y06Hnenz_EfEZ9l3Q</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Cao Rongmin</creator><creator>Zhou Huixing</creator><creator>Hou Zhongsheng</creator><creator>Wu Yingnian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><author>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Force</topic><topic>Friction</topic><topic>Mathematical model</topic><topic>Permanent magnet motors</topic><topic>Prediction algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhou Huixing</creatorcontrib><creatorcontrib>Hou Zhongsheng</creatorcontrib><creatorcontrib>Wu Yingnian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao Rongmin</au><au>Zhou Huixing</au><au>Hou Zhongsheng</au><au>Wu Yingnian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</atitle><btitle>2011 International Conference on Electrical Machines and Systems</btitle><stitle>ICEMS</stitle><date>2011-08</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781457710445</isbn><isbn>1457710447</isbn><eisbn>9781457710438</eisbn><eisbn>1457710439</eisbn><eisbn>1457710420</eisbn><eisbn>9781457710421</eisbn><abstract>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</abstract><pub>IEEE</pub><doi>10.1109/ICEMS.2011.6073732</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457710445 |
ispartof | 2011 International Conference on Electrical Machines and Systems, 2011, p.1-5 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6073732 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptation models Artificial neural networks Force Friction Mathematical model Permanent magnet motors Prediction algorithms |
title | Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-speed%20performance%20research%20for%20permanent%20magnet%20synchronous%20linear%20motor%20based%20on%20nonparametric%20model%20learning%20adaptive%20control&rft.btitle=2011%20International%20Conference%20on%20Electrical%20Machines%20and%20Systems&rft.au=Cao%20Rongmin&rft.date=2011-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781457710445&rft.isbn_list=1457710447&rft_id=info:doi/10.1109/ICEMS.2011.6073732&rft.eisbn=9781457710438&rft.eisbn_list=1457710439&rft.eisbn_list=1457710420&rft.eisbn_list=9781457710421&rft_dat=%3Cieee_6IE%3E6073732%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6073732&rfr_iscdi=true |