Loading…

Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control

Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system...

Full description

Saved in:
Bibliographic Details
Main Authors: Cao Rongmin, Zhou Huixing, Hou Zhongsheng, Wu Yingnian
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Cao Rongmin
Zhou Huixing
Hou Zhongsheng
Wu Yingnian
description Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.
doi_str_mv 10.1109/ICEMS.2011.6073732
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6073732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6073732</ieee_id><sourcerecordid>6073732</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRI0QEgj6A3DxD6R468SOj6gqUKmIA71Xjr1pjRI7sg2oZ34cI3phD7uamac5LCG3wOYATN2vl6uXt_mCAcwFk1zyxRmZKdlC3UgJrObt-T9dN5dkltI7KyOEAgVX5HsTvqo0IVo6YexDHLU3SCMm1NEcaHF-g-Kiz3TUe4-ZpqM3hxh8-Eh0cL6QdAy5kJ1OpSh46oOfdNQj5uhMCS0OdCicd35PtdVTdp9ITfA5huGGXPR6SDg73WuyfVxtl8_V5vVpvXzYVE6xXNVayLY1ixobBYLVDXQdCBBW9W3f2bKM0NJ0YMB03DQSpJWqFYx3Fqw2_Jrc_dU6RNxN0Y06Hnenz_EfEZ9l3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</creator><creatorcontrib>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</creatorcontrib><description>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</description><identifier>ISBN: 9781457710445</identifier><identifier>ISBN: 1457710447</identifier><identifier>EISBN: 9781457710438</identifier><identifier>EISBN: 1457710439</identifier><identifier>EISBN: 1457710420</identifier><identifier>EISBN: 9781457710421</identifier><identifier>DOI: 10.1109/ICEMS.2011.6073732</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Force ; Friction ; Mathematical model ; Permanent magnet motors ; Prediction algorithms</subject><ispartof>2011 International Conference on Electrical Machines and Systems, 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6073732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6073732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhou Huixing</creatorcontrib><creatorcontrib>Hou Zhongsheng</creatorcontrib><creatorcontrib>Wu Yingnian</creatorcontrib><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><title>2011 International Conference on Electrical Machines and Systems</title><addtitle>ICEMS</addtitle><description>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Force</subject><subject>Friction</subject><subject>Mathematical model</subject><subject>Permanent magnet motors</subject><subject>Prediction algorithms</subject><isbn>9781457710445</isbn><isbn>1457710447</isbn><isbn>9781457710438</isbn><isbn>1457710439</isbn><isbn>1457710420</isbn><isbn>9781457710421</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMFOwzAQRI0QEgj6A3DxD6R468SOj6gqUKmIA71Xjr1pjRI7sg2oZ34cI3phD7uamac5LCG3wOYATN2vl6uXt_mCAcwFk1zyxRmZKdlC3UgJrObt-T9dN5dkltI7KyOEAgVX5HsTvqo0IVo6YexDHLU3SCMm1NEcaHF-g-Kiz3TUe4-ZpqM3hxh8-Eh0cL6QdAy5kJ1OpSh46oOfdNQj5uhMCS0OdCicd35PtdVTdp9ITfA5huGGXPR6SDg73WuyfVxtl8_V5vVpvXzYVE6xXNVayLY1ixobBYLVDXQdCBBW9W3f2bKM0NJ0YMB03DQSpJWqFYx3Fqw2_Jrc_dU6RNxN0Y06Hnenz_EfEZ9l3Q</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Cao Rongmin</creator><creator>Zhou Huixing</creator><creator>Hou Zhongsheng</creator><creator>Wu Yingnian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</title><author>Cao Rongmin ; Zhou Huixing ; Hou Zhongsheng ; Wu Yingnian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Force</topic><topic>Friction</topic><topic>Mathematical model</topic><topic>Permanent magnet motors</topic><topic>Prediction algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao Rongmin</creatorcontrib><creatorcontrib>Zhou Huixing</creatorcontrib><creatorcontrib>Hou Zhongsheng</creatorcontrib><creatorcontrib>Wu Yingnian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao Rongmin</au><au>Zhou Huixing</au><au>Hou Zhongsheng</au><au>Wu Yingnian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control</atitle><btitle>2011 International Conference on Electrical Machines and Systems</btitle><stitle>ICEMS</stitle><date>2011-08</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781457710445</isbn><isbn>1457710447</isbn><eisbn>9781457710438</eisbn><eisbn>1457710439</eisbn><eisbn>1457710420</eisbn><eisbn>9781457710421</eisbn><abstract>Based on influence of friction, permanent magnet synchronous linear motor (PMSLM) with contact surface frequently appears rough running and control precision deterioration during low-speed operation. The design of nonparametric model learning adaptive control(NMLAC) algorithm in linear motor system is studied, estimation of pseudo-partial-derivatives is discussed, controller is based directly on pseudo partial-derivatives derived on-line from the input and output information of PMSLM using recursive least squares type of identification algorithms. The simulation control results show that the algorithms exhibit such advantages as good robustness, PMSLM low-speed response, against exogenous disturbance and noise for time-varying systems with vaguely known dynamics, the proposed method can realize good online friction estimation and compensation, hence the control performance of PMSLM is improved and it outperforms traditional PID controller and neural networks(NN) control method.</abstract><pub>IEEE</pub><doi>10.1109/ICEMS.2011.6073732</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457710445
ispartof 2011 International Conference on Electrical Machines and Systems, 2011, p.1-5
issn
language eng
recordid cdi_ieee_primary_6073732
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation models
Artificial neural networks
Force
Friction
Mathematical model
Permanent magnet motors
Prediction algorithms
title Low-speed performance research for permanent magnet synchronous linear motor based on nonparametric model learning adaptive control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low-speed%20performance%20research%20for%20permanent%20magnet%20synchronous%20linear%20motor%20based%20on%20nonparametric%20model%20learning%20adaptive%20control&rft.btitle=2011%20International%20Conference%20on%20Electrical%20Machines%20and%20Systems&rft.au=Cao%20Rongmin&rft.date=2011-08&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781457710445&rft.isbn_list=1457710447&rft_id=info:doi/10.1109/ICEMS.2011.6073732&rft.eisbn=9781457710438&rft.eisbn_list=1457710439&rft.eisbn_list=1457710420&rft.eisbn_list=9781457710421&rft_dat=%3Cieee_6IE%3E6073732%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4a6788c24e59160451bb1616d9f8fbdf8fc6a7cb1c1cb3c5717d798603bd1dac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6073732&rfr_iscdi=true