Loading…
Real-time traffic sign recognition using spatially weighted HOG trees
Traffic sign recognition is one of the main components of a Driver Assistance System (DAS). This paper presents a real-time traffic sign recognition system. It consists of three stages: 1) an image segmentation using red color enhancement to reduce the search space, 2) a HOG-based Support Vector Mac...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 66 |
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Zaklouta, F. Stanciulescu, B. |
description | Traffic sign recognition is one of the main components of a Driver Assistance System (DAS). This paper presents a real-time traffic sign recognition system. It consists of three stages: 1) an image segmentation using red color enhancement to reduce the search space, 2) a HOG-based Support Vector Machine (SVM) detection to extract the traffic signs, and 3) a tree classifier (K-d tree or Random Forests) to identify the signs found. This methodology is tested on images under bad weather conditions and poor illumination. The tree classifiers achieve high classification rates for the German Traffic Sign Recognition Benchmark and the ETH 80 dataset. The K-d tree classification is improved by introducing a Gaussian spatial weighting to favor the interior blocks of the HOG descriptors. |
doi_str_mv | 10.1109/ICAR.2011.6088571 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6088571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6088571</ieee_id><sourcerecordid>6088571</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a407055f1bb905b80c2c2851bdeb3cc6dff2a94f35ca0edb59729db324b379593</originalsourceid><addsrcrecordid>eNo1j8FKAzEYhCNSUOs-gHjJC-z6J9lskqOU2gqFQum9JNk_28h2WzYR6du7YJ3LMIdvmCHkhUHFGJi3z8X7ruLAWNWA1lKxO1IYpVktlWJMKn5Pnv6DFg-kSOkLJjVcKc0fyXKHti9zPCHNow0heppiN9AR_bkbYo7ngX6nOHQ0XWyOtu-v9Adjd8zY0vV2NVGI6ZnMgu0TFjefk_3Hcr9Yl5vtalq4KaOBXNoaFEgZmHMGpNPguedaMteiE943bQjcmjoI6S1g66RR3LRO8NoJZaQRc_L6VxsR8XAZ48mO18PtuPgFSgFMTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time traffic sign recognition using spatially weighted HOG trees</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaklouta, F. ; Stanciulescu, B.</creator><creatorcontrib>Zaklouta, F. ; Stanciulescu, B.</creatorcontrib><description>Traffic sign recognition is one of the main components of a Driver Assistance System (DAS). This paper presents a real-time traffic sign recognition system. It consists of three stages: 1) an image segmentation using red color enhancement to reduce the search space, 2) a HOG-based Support Vector Machine (SVM) detection to extract the traffic signs, and 3) a tree classifier (K-d tree or Random Forests) to identify the signs found. This methodology is tested on images under bad weather conditions and poor illumination. The tree classifiers achieve high classification rates for the German Traffic Sign Recognition Benchmark and the ETH 80 dataset. The K-d tree classification is improved by introducing a Gaussian spatial weighting to favor the interior blocks of the HOG descriptors.</description><identifier>ISBN: 1457711583</identifier><identifier>ISBN: 9781457711589</identifier><identifier>EISBN: 9781457711572</identifier><identifier>EISBN: 1457711591</identifier><identifier>EISBN: 9781457711596</identifier><identifier>EISBN: 1457711575</identifier><identifier>DOI: 10.1109/ICAR.2011.6088571</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image color analysis ; Image segmentation ; Lighting ; Real time systems ; Support vector machines ; Training ; Vegetation</subject><ispartof>2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.61-66</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6088571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6088571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaklouta, F.</creatorcontrib><creatorcontrib>Stanciulescu, B.</creatorcontrib><title>Real-time traffic sign recognition using spatially weighted HOG trees</title><title>2011 15th International Conference on Advanced Robotics (ICAR)</title><addtitle>ICAR</addtitle><description>Traffic sign recognition is one of the main components of a Driver Assistance System (DAS). This paper presents a real-time traffic sign recognition system. It consists of three stages: 1) an image segmentation using red color enhancement to reduce the search space, 2) a HOG-based Support Vector Machine (SVM) detection to extract the traffic signs, and 3) a tree classifier (K-d tree or Random Forests) to identify the signs found. This methodology is tested on images under bad weather conditions and poor illumination. The tree classifiers achieve high classification rates for the German Traffic Sign Recognition Benchmark and the ETH 80 dataset. The K-d tree classification is improved by introducing a Gaussian spatial weighting to favor the interior blocks of the HOG descriptors.</description><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Lighting</subject><subject>Real time systems</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Vegetation</subject><isbn>1457711583</isbn><isbn>9781457711589</isbn><isbn>9781457711572</isbn><isbn>1457711591</isbn><isbn>9781457711596</isbn><isbn>1457711575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKAzEYhCNSUOs-gHjJC-z6J9lskqOU2gqFQum9JNk_28h2WzYR6du7YJ3LMIdvmCHkhUHFGJi3z8X7ruLAWNWA1lKxO1IYpVktlWJMKn5Pnv6DFg-kSOkLJjVcKc0fyXKHti9zPCHNow0heppiN9AR_bkbYo7ngX6nOHQ0XWyOtu-v9Adjd8zY0vV2NVGI6ZnMgu0TFjefk_3Hcr9Yl5vtalq4KaOBXNoaFEgZmHMGpNPguedaMteiE943bQjcmjoI6S1g66RR3LRO8NoJZaQRc_L6VxsR8XAZ48mO18PtuPgFSgFMTw</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Zaklouta, F.</creator><creator>Stanciulescu, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>Real-time traffic sign recognition using spatially weighted HOG trees</title><author>Zaklouta, F. ; Stanciulescu, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a407055f1bb905b80c2c2851bdeb3cc6dff2a94f35ca0edb59729db324b379593</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Lighting</topic><topic>Real time systems</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Vegetation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zaklouta, F.</creatorcontrib><creatorcontrib>Stanciulescu, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaklouta, F.</au><au>Stanciulescu, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time traffic sign recognition using spatially weighted HOG trees</atitle><btitle>2011 15th International Conference on Advanced Robotics (ICAR)</btitle><stitle>ICAR</stitle><date>2011-06</date><risdate>2011</risdate><spage>61</spage><epage>66</epage><pages>61-66</pages><isbn>1457711583</isbn><isbn>9781457711589</isbn><eisbn>9781457711572</eisbn><eisbn>1457711591</eisbn><eisbn>9781457711596</eisbn><eisbn>1457711575</eisbn><abstract>Traffic sign recognition is one of the main components of a Driver Assistance System (DAS). This paper presents a real-time traffic sign recognition system. It consists of three stages: 1) an image segmentation using red color enhancement to reduce the search space, 2) a HOG-based Support Vector Machine (SVM) detection to extract the traffic signs, and 3) a tree classifier (K-d tree or Random Forests) to identify the signs found. This methodology is tested on images under bad weather conditions and poor illumination. The tree classifiers achieve high classification rates for the German Traffic Sign Recognition Benchmark and the ETH 80 dataset. The K-d tree classification is improved by introducing a Gaussian spatial weighting to favor the interior blocks of the HOG descriptors.</abstract><pub>IEEE</pub><doi>10.1109/ICAR.2011.6088571</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457711583 |
ispartof | 2011 15th International Conference on Advanced Robotics (ICAR), 2011, p.61-66 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6088571 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image color analysis Image segmentation Lighting Real time systems Support vector machines Training Vegetation |
title | Real-time traffic sign recognition using spatially weighted HOG trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20traffic%20sign%20recognition%20using%20spatially%20weighted%20HOG%20trees&rft.btitle=2011%2015th%20International%20Conference%20on%20Advanced%20Robotics%20(ICAR)&rft.au=Zaklouta,%20F.&rft.date=2011-06&rft.spage=61&rft.epage=66&rft.pages=61-66&rft.isbn=1457711583&rft.isbn_list=9781457711589&rft_id=info:doi/10.1109/ICAR.2011.6088571&rft.eisbn=9781457711572&rft.eisbn_list=1457711591&rft.eisbn_list=9781457711596&rft.eisbn_list=1457711575&rft_dat=%3Cieee_6IE%3E6088571%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a407055f1bb905b80c2c2851bdeb3cc6dff2a94f35ca0edb59729db324b379593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6088571&rfr_iscdi=true |