Loading…
Search result optimization using user search history
Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good wo...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 479 |
container_issue | |
container_start_page | 476 |
container_title | |
container_volume | |
creator | Heejun Han Jeasoo Kim Byeong-Hee Lee Kwangyoung Kim |
description | Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query. |
doi_str_mv | 10.1109/NaBIC.2011.6089635 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6089635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6089635</ieee_id><sourcerecordid>6089635</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3</originalsourceid><addsrcrecordid>eNpVT81qAjEYTClCi90XaC_7ArvNl_8c26U_grQHvcu3Makp6koSD_bpu6AXh2GGgWFgCHkE2gJQ-_yFr7OuZRSgVdRYxeUNqaw2IKTWAIzr26vM6B2pcv6lI5Sygsp7IhYek9vUyefjttTDocRd_MMSh319zHH_M6pPdT63NjGXIZ0eyCTgNvvq4lOyfH9bdp_N_Ptj1r3Mm2hpaYLjwTIn9dowqcxIDL3TQvaiFxjWpteCuh41OG6MlsAlaqGQ8-A8c45PydN5NnrvV4cUd5hOq8tV_g_3TUe9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Search result optimization using user search history</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</creator><creatorcontrib>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</creatorcontrib><description>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</description><identifier>ISBN: 9781457711220</identifier><identifier>ISBN: 1457711222</identifier><identifier>EISBN: 9781457711237</identifier><identifier>EISBN: 1457711230</identifier><identifier>EISBN: 1457711249</identifier><identifier>EISBN: 9781457711244</identifier><identifier>DOI: 10.1109/NaBIC.2011.6089635</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; data mining ; search history ; search result optimization ; search result personalization ; user preference data</subject><ispartof>2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, p.476-479</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6089635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6089635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heejun Han</creatorcontrib><creatorcontrib>Jeasoo Kim</creatorcontrib><creatorcontrib>Byeong-Hee Lee</creatorcontrib><creatorcontrib>Kwangyoung Kim</creatorcontrib><title>Search result optimization using user search history</title><title>2011 Third World Congress on Nature and Biologically Inspired Computing</title><addtitle>NaBIC</addtitle><description>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</description><subject>Biology</subject><subject>data mining</subject><subject>search history</subject><subject>search result optimization</subject><subject>search result personalization</subject><subject>user preference data</subject><isbn>9781457711220</isbn><isbn>1457711222</isbn><isbn>9781457711237</isbn><isbn>1457711230</isbn><isbn>1457711249</isbn><isbn>9781457711244</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVT81qAjEYTClCi90XaC_7ArvNl_8c26U_grQHvcu3Makp6koSD_bpu6AXh2GGgWFgCHkE2gJQ-_yFr7OuZRSgVdRYxeUNqaw2IKTWAIzr26vM6B2pcv6lI5Sygsp7IhYek9vUyefjttTDocRd_MMSh319zHH_M6pPdT63NjGXIZ0eyCTgNvvq4lOyfH9bdp_N_Ptj1r3Mm2hpaYLjwTIn9dowqcxIDL3TQvaiFxjWpteCuh41OG6MlsAlaqGQ8-A8c45PydN5NnrvV4cUd5hOq8tV_g_3TUe9</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Heejun Han</creator><creator>Jeasoo Kim</creator><creator>Byeong-Hee Lee</creator><creator>Kwangyoung Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Search result optimization using user search history</title><author>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>data mining</topic><topic>search history</topic><topic>search result optimization</topic><topic>search result personalization</topic><topic>user preference data</topic><toplevel>online_resources</toplevel><creatorcontrib>Heejun Han</creatorcontrib><creatorcontrib>Jeasoo Kim</creatorcontrib><creatorcontrib>Byeong-Hee Lee</creatorcontrib><creatorcontrib>Kwangyoung Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heejun Han</au><au>Jeasoo Kim</au><au>Byeong-Hee Lee</au><au>Kwangyoung Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Search result optimization using user search history</atitle><btitle>2011 Third World Congress on Nature and Biologically Inspired Computing</btitle><stitle>NaBIC</stitle><date>2011-10</date><risdate>2011</risdate><spage>476</spage><epage>479</epage><pages>476-479</pages><isbn>9781457711220</isbn><isbn>1457711222</isbn><eisbn>9781457711237</eisbn><eisbn>1457711230</eisbn><eisbn>1457711249</eisbn><eisbn>9781457711244</eisbn><abstract>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</abstract><pub>IEEE</pub><doi>10.1109/NaBIC.2011.6089635</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457711220 |
ispartof | 2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, p.476-479 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6089635 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biology data mining search history search result optimization search result personalization user preference data |
title | Search result optimization using user search history |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Search%20result%20optimization%20using%20user%20search%20history&rft.btitle=2011%20Third%20World%20Congress%20on%20Nature%20and%20Biologically%20Inspired%20Computing&rft.au=Heejun%20Han&rft.date=2011-10&rft.spage=476&rft.epage=479&rft.pages=476-479&rft.isbn=9781457711220&rft.isbn_list=1457711222&rft_id=info:doi/10.1109/NaBIC.2011.6089635&rft.eisbn=9781457711237&rft.eisbn_list=1457711230&rft.eisbn_list=1457711249&rft.eisbn_list=9781457711244&rft_dat=%3Cieee_6IE%3E6089635%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6089635&rfr_iscdi=true |