Loading…

Search result optimization using user search history

Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good wo...

Full description

Saved in:
Bibliographic Details
Main Authors: Heejun Han, Jeasoo Kim, Byeong-Hee Lee, Kwangyoung Kim
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 479
container_issue
container_start_page 476
container_title
container_volume
creator Heejun Han
Jeasoo Kim
Byeong-Hee Lee
Kwangyoung Kim
description Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.
doi_str_mv 10.1109/NaBIC.2011.6089635
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6089635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6089635</ieee_id><sourcerecordid>6089635</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3</originalsourceid><addsrcrecordid>eNpVT81qAjEYTClCi90XaC_7ArvNl_8c26U_grQHvcu3Makp6koSD_bpu6AXh2GGgWFgCHkE2gJQ-_yFr7OuZRSgVdRYxeUNqaw2IKTWAIzr26vM6B2pcv6lI5Sygsp7IhYek9vUyefjttTDocRd_MMSh319zHH_M6pPdT63NjGXIZ0eyCTgNvvq4lOyfH9bdp_N_Ptj1r3Mm2hpaYLjwTIn9dowqcxIDL3TQvaiFxjWpteCuh41OG6MlsAlaqGQ8-A8c45PydN5NnrvV4cUd5hOq8tV_g_3TUe9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Search result optimization using user search history</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</creator><creatorcontrib>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</creatorcontrib><description>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</description><identifier>ISBN: 9781457711220</identifier><identifier>ISBN: 1457711222</identifier><identifier>EISBN: 9781457711237</identifier><identifier>EISBN: 1457711230</identifier><identifier>EISBN: 1457711249</identifier><identifier>EISBN: 9781457711244</identifier><identifier>DOI: 10.1109/NaBIC.2011.6089635</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; data mining ; search history ; search result optimization ; search result personalization ; user preference data</subject><ispartof>2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, p.476-479</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6089635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6089635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heejun Han</creatorcontrib><creatorcontrib>Jeasoo Kim</creatorcontrib><creatorcontrib>Byeong-Hee Lee</creatorcontrib><creatorcontrib>Kwangyoung Kim</creatorcontrib><title>Search result optimization using user search history</title><title>2011 Third World Congress on Nature and Biologically Inspired Computing</title><addtitle>NaBIC</addtitle><description>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</description><subject>Biology</subject><subject>data mining</subject><subject>search history</subject><subject>search result optimization</subject><subject>search result personalization</subject><subject>user preference data</subject><isbn>9781457711220</isbn><isbn>1457711222</isbn><isbn>9781457711237</isbn><isbn>1457711230</isbn><isbn>1457711249</isbn><isbn>9781457711244</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVT81qAjEYTClCi90XaC_7ArvNl_8c26U_grQHvcu3Makp6koSD_bpu6AXh2GGgWFgCHkE2gJQ-_yFr7OuZRSgVdRYxeUNqaw2IKTWAIzr26vM6B2pcv6lI5Sygsp7IhYek9vUyefjttTDocRd_MMSh319zHH_M6pPdT63NjGXIZ0eyCTgNvvq4lOyfH9bdp_N_Ptj1r3Mm2hpaYLjwTIn9dowqcxIDL3TQvaiFxjWpteCuh41OG6MlsAlaqGQ8-A8c45PydN5NnrvV4cUd5hOq8tV_g_3TUe9</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Heejun Han</creator><creator>Jeasoo Kim</creator><creator>Byeong-Hee Lee</creator><creator>Kwangyoung Kim</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Search result optimization using user search history</title><author>Heejun Han ; Jeasoo Kim ; Byeong-Hee Lee ; Kwangyoung Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>data mining</topic><topic>search history</topic><topic>search result optimization</topic><topic>search result personalization</topic><topic>user preference data</topic><toplevel>online_resources</toplevel><creatorcontrib>Heejun Han</creatorcontrib><creatorcontrib>Jeasoo Kim</creatorcontrib><creatorcontrib>Byeong-Hee Lee</creatorcontrib><creatorcontrib>Kwangyoung Kim</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heejun Han</au><au>Jeasoo Kim</au><au>Byeong-Hee Lee</au><au>Kwangyoung Kim</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Search result optimization using user search history</atitle><btitle>2011 Third World Congress on Nature and Biologically Inspired Computing</btitle><stitle>NaBIC</stitle><date>2011-10</date><risdate>2011</risdate><spage>476</spage><epage>479</epage><pages>476-479</pages><isbn>9781457711220</isbn><isbn>1457711222</isbn><eisbn>9781457711237</eisbn><eisbn>1457711230</eisbn><eisbn>1457711249</eisbn><eisbn>9781457711244</eisbn><abstract>Search service which offers same result list to users using same query cannot satisfy user preference or burdens users with additional effort to find their interesting data. Listing up user preference data in first page of search result is the major factor for search performance. It can be a good work that search service offers suitable result to each user when several users having each interest area or major field inputted the same query. So we propose a method to personalize the search result using user search history data. And we make a target at service academic paper data having some classification codes such as the DDC (Dewey Decimal Classification) code. The search result personalization proceeds in two steps. user preference areas are first detected by analyzing search history data which are user query, search result per query, and records about user's detail view paging. And then boosting algorithm using pre-detected user preference are makes personalized search result. This rule lists up the good data to each user even if several users having different interesting area input same query.</abstract><pub>IEEE</pub><doi>10.1109/NaBIC.2011.6089635</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457711220
ispartof 2011 Third World Congress on Nature and Biologically Inspired Computing, 2011, p.476-479
issn
language eng
recordid cdi_ieee_primary_6089635
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biology
data mining
search history
search result optimization
search result personalization
user preference data
title Search result optimization using user search history
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Search%20result%20optimization%20using%20user%20search%20history&rft.btitle=2011%20Third%20World%20Congress%20on%20Nature%20and%20Biologically%20Inspired%20Computing&rft.au=Heejun%20Han&rft.date=2011-10&rft.spage=476&rft.epage=479&rft.pages=476-479&rft.isbn=9781457711220&rft.isbn_list=1457711222&rft_id=info:doi/10.1109/NaBIC.2011.6089635&rft.eisbn=9781457711237&rft.eisbn_list=1457711230&rft.eisbn_list=1457711249&rft.eisbn_list=9781457711244&rft_dat=%3Cieee_6IE%3E6089635%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-fc3f92c57d82568568afbc745b4b4afd8b740cba71c38875135a746a33fce2cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6089635&rfr_iscdi=true