Combating class imbalance problem in semi-supervised defect detection
Detection of defect-prone software modules is an important topic in software quality research, and widely studied under enough defect data circumstance. An improved semi-supervised learning approach for defect detection involving class imbalanced and limited labeled data problem has been proposed. T...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 622 |
container_issue | |
container_start_page | 619 |
container_title | |
container_volume | |
creator | Ying Ma Guangchun Luo Jiong Li Aiguo Chen |
description | Detection of defect-prone software modules is an important topic in software quality research, and widely studied under enough defect data circumstance. An improved semi-supervised learning approach for defect detection involving class imbalanced and limited labeled data problem has been proposed. This approach employs random under-sampling technique to resample the original training set and updating training set in each round for co-train style algorithm. In comparison with conventional machine learning approaches, our method has significant superior performance in the aspect of AUC (area under the receiver operating characteristic) metric. Experimental results also show that with the proposed learning approach, it is possible to design better method to tackle the class imbalanced problem in semi-supervised learning. |
doi_str_mv | 10.1109/ICCPS.2011.6092260 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6092260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6092260</ieee_id><sourcerecordid>6092260</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ec0bc3a65ae14fef15def80a2882bc0f16d462786df885ae97adaaafdab6f2ff3</originalsourceid><addsrcrecordid>eNpVj91KxDAUhCOyoKx9gfUmL9B6krZpeill1YUFBfd-OUlOJNI_mir49gbcG-fmY4ZhYBjbCSiEgPbh0HVv74UEIQoFrZQKrljWNlpUddOASvn1Py_1Dcti_IQkpbSuqlu276bB4BrGD257jJGHZHscLfF5mUxPAw8jjzSEPH7NtHyHSI478mTXhDUhTOMd23jsI2UXbtnpaX_qXvLj6_OhezzmoYU1JwvGlqhqJFF58qJOOxpQai2NBS-Uq5RstHJe61RqG3SI6B0a5aX35Zbd_80GIjrPSxhw-Tlfvpe_0lhPHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combating class imbalance problem in semi-supervised defect detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ying Ma ; Guangchun Luo ; Jiong Li ; Aiguo Chen</creator><creatorcontrib>Ying Ma ; Guangchun Luo ; Jiong Li ; Aiguo Chen</creatorcontrib><description>Detection of defect-prone software modules is an important topic in software quality research, and widely studied under enough defect data circumstance. An improved semi-supervised learning approach for defect detection involving class imbalanced and limited labeled data problem has been proposed. This approach employs random under-sampling technique to resample the original training set and updating training set in each round for co-train style algorithm. In comparison with conventional machine learning approaches, our method has significant superior performance in the aspect of AUC (area under the receiver operating characteristic) metric. Experimental results also show that with the proposed learning approach, it is possible to design better method to tackle the class imbalanced problem in semi-supervised learning.</description><identifier>ISBN: 9781457706028</identifier><identifier>ISBN: 1457706024</identifier><identifier>EISBN: 9781457706011</identifier><identifier>EISBN: 1457706008</identifier><identifier>EISBN: 9781457706035</identifier><identifier>EISBN: 1457706032</identifier><identifier>EISBN: 9781457706004</identifier><identifier>EISBN: 1457706016</identifier><identifier>DOI: 10.1109/ICCPS.2011.6092260</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Machine learning ; Software algorithms ; Software quality ; Training ; Training data</subject><ispartof>2011 International Conference on Computational Problem-Solving (ICCP), 2011, p.619-622</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6092260$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27899,54892</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6092260$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ying Ma</creatorcontrib><creatorcontrib>Guangchun Luo</creatorcontrib><creatorcontrib>Jiong Li</creatorcontrib><creatorcontrib>Aiguo Chen</creatorcontrib><title>Combating class imbalance problem in semi-supervised defect detection</title><title>2011 International Conference on Computational Problem-Solving (ICCP)</title><addtitle>ICCPS</addtitle><description>Detection of defect-prone software modules is an important topic in software quality research, and widely studied under enough defect data circumstance. An improved semi-supervised learning approach for defect detection involving class imbalanced and limited labeled data problem has been proposed. This approach employs random under-sampling technique to resample the original training set and updating training set in each round for co-train style algorithm. In comparison with conventional machine learning approaches, our method has significant superior performance in the aspect of AUC (area under the receiver operating characteristic) metric. Experimental results also show that with the proposed learning approach, it is possible to design better method to tackle the class imbalanced problem in semi-supervised learning.</description><subject>Classification algorithms</subject><subject>Machine learning</subject><subject>Software algorithms</subject><subject>Software quality</subject><subject>Training</subject><subject>Training data</subject><isbn>9781457706028</isbn><isbn>1457706024</isbn><isbn>9781457706011</isbn><isbn>1457706008</isbn><isbn>9781457706035</isbn><isbn>1457706032</isbn><isbn>9781457706004</isbn><isbn>1457706016</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVj91KxDAUhCOyoKx9gfUmL9B6krZpeill1YUFBfd-OUlOJNI_mir49gbcG-fmY4ZhYBjbCSiEgPbh0HVv74UEIQoFrZQKrljWNlpUddOASvn1Py_1Dcti_IQkpbSuqlu276bB4BrGD257jJGHZHscLfF5mUxPAw8jjzSEPH7NtHyHSI478mTXhDUhTOMd23jsI2UXbtnpaX_qXvLj6_OhezzmoYU1JwvGlqhqJFF58qJOOxpQai2NBS-Uq5RstHJe61RqG3SI6B0a5aX35Zbd_80GIjrPSxhw-Tlfvpe_0lhPHg</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Ying Ma</creator><creator>Guangchun Luo</creator><creator>Jiong Li</creator><creator>Aiguo Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Combating class imbalance problem in semi-supervised defect detection</title><author>Ying Ma ; Guangchun Luo ; Jiong Li ; Aiguo Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ec0bc3a65ae14fef15def80a2882bc0f16d462786df885ae97adaaafdab6f2ff3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Machine learning</topic><topic>Software algorithms</topic><topic>Software quality</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Ying Ma</creatorcontrib><creatorcontrib>Guangchun Luo</creatorcontrib><creatorcontrib>Jiong Li</creatorcontrib><creatorcontrib>Aiguo Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ying Ma</au><au>Guangchun Luo</au><au>Jiong Li</au><au>Aiguo Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combating class imbalance problem in semi-supervised defect detection</atitle><btitle>2011 International Conference on Computational Problem-Solving (ICCP)</btitle><stitle>ICCPS</stitle><date>2011-10</date><risdate>2011</risdate><spage>619</spage><epage>622</epage><pages>619-622</pages><isbn>9781457706028</isbn><isbn>1457706024</isbn><eisbn>9781457706011</eisbn><eisbn>1457706008</eisbn><eisbn>9781457706035</eisbn><eisbn>1457706032</eisbn><eisbn>9781457706004</eisbn><eisbn>1457706016</eisbn><abstract>Detection of defect-prone software modules is an important topic in software quality research, and widely studied under enough defect data circumstance. An improved semi-supervised learning approach for defect detection involving class imbalanced and limited labeled data problem has been proposed. This approach employs random under-sampling technique to resample the original training set and updating training set in each round for co-train style algorithm. In comparison with conventional machine learning approaches, our method has significant superior performance in the aspect of AUC (area under the receiver operating characteristic) metric. Experimental results also show that with the proposed learning approach, it is possible to design better method to tackle the class imbalanced problem in semi-supervised learning.</abstract><pub>IEEE</pub><doi>10.1109/ICCPS.2011.6092260</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457706028 |
ispartof | 2011 International Conference on Computational Problem-Solving (ICCP), 2011, p.619-622 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6092260 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Machine learning Software algorithms Software quality Training Training data |
title | Combating class imbalance problem in semi-supervised defect detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T10%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combating%20class%20imbalance%20problem%20in%20semi-supervised%20defect%20detection&rft.btitle=2011%20International%20Conference%20on%20Computational%20Problem-Solving%20(ICCP)&rft.au=Ying%20Ma&rft.date=2011-10&rft.spage=619&rft.epage=622&rft.pages=619-622&rft.isbn=9781457706028&rft.isbn_list=1457706024&rft_id=info:doi/10.1109/ICCPS.2011.6092260&rft.eisbn=9781457706011&rft.eisbn_list=1457706008&rft.eisbn_list=9781457706035&rft.eisbn_list=1457706032&rft.eisbn_list=9781457706004&rft.eisbn_list=1457706016&rft_dat=%3Cieee_6IE%3E6092260%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ec0bc3a65ae14fef15def80a2882bc0f16d462786df885ae97adaaafdab6f2ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6092260&rfr_iscdi=true |