Loading…

4-dimensional local spatio-temporal features for human activity recognition

Recognizing human activities from common color image sequences faces many challenges, such as complex backgrounds, camera motion, and illumination changes. In this paper, we propose a new 4-dimensional (4D) local spatio-temporal feature that combines both intensity and depth information. The feature...

Full description

Saved in:
Bibliographic Details
Main Authors: Hao Zhang, Parker, L. E.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c196t-826703985e7d0a1276e8ad6d576334b4ea85d46a33f608ae034d583efc137a4f3
cites
container_end_page 2049
container_issue
container_start_page 2044
container_title
container_volume
creator Hao Zhang
Parker, L. E.
description Recognizing human activities from common color image sequences faces many challenges, such as complex backgrounds, camera motion, and illumination changes. In this paper, we propose a new 4-dimensional (4D) local spatio-temporal feature that combines both intensity and depth information. The feature detector applies separate filters along the 3D spatial dimensions and the 1D temporal dimension to detect a feature point. The feature descriptor then computes and concatenates the intensity and depth gradients within a 4D hyper cuboid, which is centered at the detected feature point, as a feature. For recognizing human activities, Latent Dirichlet Allocation with Gibbs sampling is used as the classifier. Experiments are performed on a newly created database that contains six human activities, each with 33 samples with complex variations. Experimental results demonstrate the promising performance of the proposed features for the task of human activity recognition.
doi_str_mv 10.1109/IROS.2011.6094489
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6094489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094489</ieee_id><sourcerecordid>6094489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-826703985e7d0a1276e8ad6d576334b4ea85d46a33f608ae034d583efc137a4f3</originalsourceid><addsrcrecordid>eNo9kFtLw0AUhNcbWGt-gPiSP5B6Nns7-yjFS7FQ8PJcjsmJriTZkKRC_70Bqy8zDN8wDyPElYSFlOBvVs-bl0UOUi4seK3RH4nEO5RW5qi1MXgsZrk0KgO09kRc_AFtTv-BwXORDMMXAEhwHr2diSedlaHhdgixpTqtYzHp0NEYYjZy08V-yhXTuOt5SKvYp5-7htqUijF8h3Gf9lzEjzZM_fZSnFVUD5wcfC7e7u9el4_ZevOwWt6us0J6O2aYWwfKo2FXAsncWUYqbWmcVUq_ayY0pbakVGUBiUHp0qDiqpDKka7UXFz_7gZm3nZ9aKjfbw-_qB9lWlJ_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>4-dimensional local spatio-temporal features for human activity recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hao Zhang ; Parker, L. E.</creator><creatorcontrib>Hao Zhang ; Parker, L. E.</creatorcontrib><description>Recognizing human activities from common color image sequences faces many challenges, such as complex backgrounds, camera motion, and illumination changes. In this paper, we propose a new 4-dimensional (4D) local spatio-temporal feature that combines both intensity and depth information. The feature detector applies separate filters along the 3D spatial dimensions and the 1D temporal dimension to detect a feature point. The feature descriptor then computes and concatenates the intensity and depth gradients within a 4D hyper cuboid, which is centered at the detected feature point, as a feature. For recognizing human activities, Latent Dirichlet Allocation with Gibbs sampling is used as the classifier. Experiments are performed on a newly created database that contains six human activities, each with 33 samples with complex variations. Experimental results demonstrate the promising performance of the proposed features for the task of human activity recognition.</description><identifier>ISSN: 2153-0858</identifier><identifier>ISBN: 1612844545</identifier><identifier>ISBN: 9781612844541</identifier><identifier>EISSN: 2153-0866</identifier><identifier>EISBN: 9781612844558</identifier><identifier>EISBN: 1612844553</identifier><identifier>EISBN: 9781612844565</identifier><identifier>EISBN: 1612844561</identifier><identifier>DOI: 10.1109/IROS.2011.6094489</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Feature extraction ; Humans ; Three dimensional displays ; Vectors ; Videos</subject><ispartof>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.2044-2049</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c196t-826703985e7d0a1276e8ad6d576334b4ea85d46a33f608ae034d583efc137a4f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6094489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hao Zhang</creatorcontrib><creatorcontrib>Parker, L. E.</creatorcontrib><title>4-dimensional local spatio-temporal features for human activity recognition</title><title>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IROS</addtitle><description>Recognizing human activities from common color image sequences faces many challenges, such as complex backgrounds, camera motion, and illumination changes. In this paper, we propose a new 4-dimensional (4D) local spatio-temporal feature that combines both intensity and depth information. The feature detector applies separate filters along the 3D spatial dimensions and the 1D temporal dimension to detect a feature point. The feature descriptor then computes and concatenates the intensity and depth gradients within a 4D hyper cuboid, which is centered at the detected feature point, as a feature. For recognizing human activities, Latent Dirichlet Allocation with Gibbs sampling is used as the classifier. Experiments are performed on a newly created database that contains six human activities, each with 33 samples with complex variations. Experimental results demonstrate the promising performance of the proposed features for the task of human activity recognition.</description><subject>Cameras</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Three dimensional displays</subject><subject>Vectors</subject><subject>Videos</subject><issn>2153-0858</issn><issn>2153-0866</issn><isbn>1612844545</isbn><isbn>9781612844541</isbn><isbn>9781612844558</isbn><isbn>1612844553</isbn><isbn>9781612844565</isbn><isbn>1612844561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kFtLw0AUhNcbWGt-gPiSP5B6Nns7-yjFS7FQ8PJcjsmJriTZkKRC_70Bqy8zDN8wDyPElYSFlOBvVs-bl0UOUi4seK3RH4nEO5RW5qi1MXgsZrk0KgO09kRc_AFtTv-BwXORDMMXAEhwHr2diSedlaHhdgixpTqtYzHp0NEYYjZy08V-yhXTuOt5SKvYp5-7htqUijF8h3Gf9lzEjzZM_fZSnFVUD5wcfC7e7u9el4_ZevOwWt6us0J6O2aYWwfKo2FXAsncWUYqbWmcVUq_ayY0pbakVGUBiUHp0qDiqpDKka7UXFz_7gZm3nZ9aKjfbw-_qB9lWlJ_</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Hao Zhang</creator><creator>Parker, L. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>4-dimensional local spatio-temporal features for human activity recognition</title><author>Hao Zhang ; Parker, L. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-826703985e7d0a1276e8ad6d576334b4ea85d46a33f608ae034d583efc137a4f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Three dimensional displays</topic><topic>Vectors</topic><topic>Videos</topic><toplevel>online_resources</toplevel><creatorcontrib>Hao Zhang</creatorcontrib><creatorcontrib>Parker, L. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hao Zhang</au><au>Parker, L. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>4-dimensional local spatio-temporal features for human activity recognition</atitle><btitle>2011 IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IROS</stitle><date>2011-09</date><risdate>2011</risdate><spage>2044</spage><epage>2049</epage><pages>2044-2049</pages><issn>2153-0858</issn><eissn>2153-0866</eissn><isbn>1612844545</isbn><isbn>9781612844541</isbn><eisbn>9781612844558</eisbn><eisbn>1612844553</eisbn><eisbn>9781612844565</eisbn><eisbn>1612844561</eisbn><abstract>Recognizing human activities from common color image sequences faces many challenges, such as complex backgrounds, camera motion, and illumination changes. In this paper, we propose a new 4-dimensional (4D) local spatio-temporal feature that combines both intensity and depth information. The feature detector applies separate filters along the 3D spatial dimensions and the 1D temporal dimension to detect a feature point. The feature descriptor then computes and concatenates the intensity and depth gradients within a 4D hyper cuboid, which is centered at the detected feature point, as a feature. For recognizing human activities, Latent Dirichlet Allocation with Gibbs sampling is used as the classifier. Experiments are performed on a newly created database that contains six human activities, each with 33 samples with complex variations. Experimental results demonstrate the promising performance of the proposed features for the task of human activity recognition.</abstract><pub>IEEE</pub><doi>10.1109/IROS.2011.6094489</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-0858
ispartof 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p.2044-2049
issn 2153-0858
2153-0866
language eng
recordid cdi_ieee_primary_6094489
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Feature extraction
Humans
Three dimensional displays
Vectors
Videos
title 4-dimensional local spatio-temporal features for human activity recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=4-dimensional%20local%20spatio-temporal%20features%20for%20human%20activity%20recognition&rft.btitle=2011%20IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Hao%20Zhang&rft.date=2011-09&rft.spage=2044&rft.epage=2049&rft.pages=2044-2049&rft.issn=2153-0858&rft.eissn=2153-0866&rft.isbn=1612844545&rft.isbn_list=9781612844541&rft_id=info:doi/10.1109/IROS.2011.6094489&rft.eisbn=9781612844558&rft.eisbn_list=1612844553&rft.eisbn_list=9781612844565&rft.eisbn_list=1612844561&rft_dat=%3Cieee_6IE%3E6094489%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-826703985e7d0a1276e8ad6d576334b4ea85d46a33f608ae034d583efc137a4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6094489&rfr_iscdi=true