Loading…
Arrhythmia classification from wavelet feature on FGPA
Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 354 |
container_issue | |
container_start_page | 349 |
container_title | |
container_volume | |
creator | Jatmiko, W. Mursanto, P. Febrian, A. Fajar, M. Anggoro, W. T. Rambe, R. S. Tawakal, M. I. Jovan, F. F. Eka S, M. |
description | Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board. |
doi_str_mv | 10.1109/MHS.2011.6102207 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6102207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6102207</ieee_id><sourcerecordid>6102207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843</originalsourceid><addsrcrecordid>eNpFj09Lw0AUxFdEUGvvgpd8gcS3_3ePodhWqCjYe3lJ3tKVxMpuVPrtDbTgHGb4zWFgGLvnUHEO_vFl_V4J4LwyHIQAe8FuudLWcmm4ufwHcNdsnvMHTDLGewU3zNQp7Y_jfohYtD3mHENscYyHzyKkw1D84g_1NBaBcPxOVEz9cvVW37GrgH2m-TlnbLt82i7W5eZ19byoN2X0MJbWdC1CF0jLRjhSutHWWOOtl67rOFLTtCQcEkirLWpwCi22UhkxmVNyxh5Os5GIdl8pDpiOu_NN-QdCekVN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Arrhythmia classification from wavelet feature on FGPA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</creator><creatorcontrib>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</creatorcontrib><description>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</description><identifier>ISBN: 1457713608</identifier><identifier>ISBN: 9781457713606</identifier><identifier>EISBN: 1457713616</identifier><identifier>EISBN: 9781457713613</identifier><identifier>EISBN: 1457713624</identifier><identifier>EISBN: 9781457713620</identifier><identifier>DOI: 10.1109/MHS.2011.6102207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Discrete wavelet transforms ; Electrocardiography ; Feature extraction ; Field programmable gate arrays ; Random access memory ; Wavelet analysis</subject><ispartof>2011 International Symposium on Micro-NanoMechatronics and Human Science, 2011, p.349-354</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6102207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6102207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jatmiko, W.</creatorcontrib><creatorcontrib>Mursanto, P.</creatorcontrib><creatorcontrib>Febrian, A.</creatorcontrib><creatorcontrib>Fajar, M.</creatorcontrib><creatorcontrib>Anggoro, W. T.</creatorcontrib><creatorcontrib>Rambe, R. S.</creatorcontrib><creatorcontrib>Tawakal, M. I.</creatorcontrib><creatorcontrib>Jovan, F. F.</creatorcontrib><creatorcontrib>Eka S, M.</creatorcontrib><title>Arrhythmia classification from wavelet feature on FGPA</title><title>2011 International Symposium on Micro-NanoMechatronics and Human Science</title><addtitle>MHS</addtitle><description>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</description><subject>Accuracy</subject><subject>Discrete wavelet transforms</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>Random access memory</subject><subject>Wavelet analysis</subject><isbn>1457713608</isbn><isbn>9781457713606</isbn><isbn>1457713616</isbn><isbn>9781457713613</isbn><isbn>1457713624</isbn><isbn>9781457713620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj09Lw0AUxFdEUGvvgpd8gcS3_3ePodhWqCjYe3lJ3tKVxMpuVPrtDbTgHGb4zWFgGLvnUHEO_vFl_V4J4LwyHIQAe8FuudLWcmm4ufwHcNdsnvMHTDLGewU3zNQp7Y_jfohYtD3mHENscYyHzyKkw1D84g_1NBaBcPxOVEz9cvVW37GrgH2m-TlnbLt82i7W5eZ19byoN2X0MJbWdC1CF0jLRjhSutHWWOOtl67rOFLTtCQcEkirLWpwCi22UhkxmVNyxh5Os5GIdl8pDpiOu_NN-QdCekVN</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Jatmiko, W.</creator><creator>Mursanto, P.</creator><creator>Febrian, A.</creator><creator>Fajar, M.</creator><creator>Anggoro, W. T.</creator><creator>Rambe, R. S.</creator><creator>Tawakal, M. I.</creator><creator>Jovan, F. F.</creator><creator>Eka S, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Arrhythmia classification from wavelet feature on FGPA</title><author>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Discrete wavelet transforms</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>Random access memory</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jatmiko, W.</creatorcontrib><creatorcontrib>Mursanto, P.</creatorcontrib><creatorcontrib>Febrian, A.</creatorcontrib><creatorcontrib>Fajar, M.</creatorcontrib><creatorcontrib>Anggoro, W. T.</creatorcontrib><creatorcontrib>Rambe, R. S.</creatorcontrib><creatorcontrib>Tawakal, M. I.</creatorcontrib><creatorcontrib>Jovan, F. F.</creatorcontrib><creatorcontrib>Eka S, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jatmiko, W.</au><au>Mursanto, P.</au><au>Febrian, A.</au><au>Fajar, M.</au><au>Anggoro, W. T.</au><au>Rambe, R. S.</au><au>Tawakal, M. I.</au><au>Jovan, F. F.</au><au>Eka S, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Arrhythmia classification from wavelet feature on FGPA</atitle><btitle>2011 International Symposium on Micro-NanoMechatronics and Human Science</btitle><stitle>MHS</stitle><date>2011-11</date><risdate>2011</risdate><spage>349</spage><epage>354</epage><pages>349-354</pages><isbn>1457713608</isbn><isbn>9781457713606</isbn><eisbn>1457713616</eisbn><eisbn>9781457713613</eisbn><eisbn>1457713624</eisbn><eisbn>9781457713620</eisbn><abstract>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</abstract><pub>IEEE</pub><doi>10.1109/MHS.2011.6102207</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457713608 |
ispartof | 2011 International Symposium on Micro-NanoMechatronics and Human Science, 2011, p.349-354 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6102207 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Discrete wavelet transforms Electrocardiography Feature extraction Field programmable gate arrays Random access memory Wavelet analysis |
title | Arrhythmia classification from wavelet feature on FGPA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Arrhythmia%20classification%20from%20wavelet%20feature%20on%20FGPA&rft.btitle=2011%20International%20Symposium%20on%20Micro-NanoMechatronics%20and%20Human%20Science&rft.au=Jatmiko,%20W.&rft.date=2011-11&rft.spage=349&rft.epage=354&rft.pages=349-354&rft.isbn=1457713608&rft.isbn_list=9781457713606&rft_id=info:doi/10.1109/MHS.2011.6102207&rft.eisbn=1457713616&rft.eisbn_list=9781457713613&rft.eisbn_list=1457713624&rft.eisbn_list=9781457713620&rft_dat=%3Cieee_6IE%3E6102207%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6102207&rfr_iscdi=true |