Loading…

Arrhythmia classification from wavelet feature on FGPA

Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many...

Full description

Saved in:
Bibliographic Details
Main Authors: Jatmiko, W., Mursanto, P., Febrian, A., Fajar, M., Anggoro, W. T., Rambe, R. S., Tawakal, M. I., Jovan, F. F., Eka S, M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 354
container_issue
container_start_page 349
container_title
container_volume
creator Jatmiko, W.
Mursanto, P.
Febrian, A.
Fajar, M.
Anggoro, W. T.
Rambe, R. S.
Tawakal, M. I.
Jovan, F. F.
Eka S, M.
description Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.
doi_str_mv 10.1109/MHS.2011.6102207
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6102207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6102207</ieee_id><sourcerecordid>6102207</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843</originalsourceid><addsrcrecordid>eNpFj09Lw0AUxFdEUGvvgpd8gcS3_3ePodhWqCjYe3lJ3tKVxMpuVPrtDbTgHGb4zWFgGLvnUHEO_vFl_V4J4LwyHIQAe8FuudLWcmm4ufwHcNdsnvMHTDLGewU3zNQp7Y_jfohYtD3mHENscYyHzyKkw1D84g_1NBaBcPxOVEz9cvVW37GrgH2m-TlnbLt82i7W5eZ19byoN2X0MJbWdC1CF0jLRjhSutHWWOOtl67rOFLTtCQcEkirLWpwCi22UhkxmVNyxh5Os5GIdl8pDpiOu_NN-QdCekVN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Arrhythmia classification from wavelet feature on FGPA</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</creator><creatorcontrib>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</creatorcontrib><description>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</description><identifier>ISBN: 1457713608</identifier><identifier>ISBN: 9781457713606</identifier><identifier>EISBN: 1457713616</identifier><identifier>EISBN: 9781457713613</identifier><identifier>EISBN: 1457713624</identifier><identifier>EISBN: 9781457713620</identifier><identifier>DOI: 10.1109/MHS.2011.6102207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Discrete wavelet transforms ; Electrocardiography ; Feature extraction ; Field programmable gate arrays ; Random access memory ; Wavelet analysis</subject><ispartof>2011 International Symposium on Micro-NanoMechatronics and Human Science, 2011, p.349-354</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6102207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6102207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jatmiko, W.</creatorcontrib><creatorcontrib>Mursanto, P.</creatorcontrib><creatorcontrib>Febrian, A.</creatorcontrib><creatorcontrib>Fajar, M.</creatorcontrib><creatorcontrib>Anggoro, W. T.</creatorcontrib><creatorcontrib>Rambe, R. S.</creatorcontrib><creatorcontrib>Tawakal, M. I.</creatorcontrib><creatorcontrib>Jovan, F. F.</creatorcontrib><creatorcontrib>Eka S, M.</creatorcontrib><title>Arrhythmia classification from wavelet feature on FGPA</title><title>2011 International Symposium on Micro-NanoMechatronics and Human Science</title><addtitle>MHS</addtitle><description>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</description><subject>Accuracy</subject><subject>Discrete wavelet transforms</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Field programmable gate arrays</subject><subject>Random access memory</subject><subject>Wavelet analysis</subject><isbn>1457713608</isbn><isbn>9781457713606</isbn><isbn>1457713616</isbn><isbn>9781457713613</isbn><isbn>1457713624</isbn><isbn>9781457713620</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj09Lw0AUxFdEUGvvgpd8gcS3_3ePodhWqCjYe3lJ3tKVxMpuVPrtDbTgHGb4zWFgGLvnUHEO_vFl_V4J4LwyHIQAe8FuudLWcmm4ufwHcNdsnvMHTDLGewU3zNQp7Y_jfohYtD3mHENscYyHzyKkw1D84g_1NBaBcPxOVEz9cvVW37GrgH2m-TlnbLt82i7W5eZ19byoN2X0MJbWdC1CF0jLRjhSutHWWOOtl67rOFLTtCQcEkirLWpwCi22UhkxmVNyxh5Os5GIdl8pDpiOu_NN-QdCekVN</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Jatmiko, W.</creator><creator>Mursanto, P.</creator><creator>Febrian, A.</creator><creator>Fajar, M.</creator><creator>Anggoro, W. T.</creator><creator>Rambe, R. S.</creator><creator>Tawakal, M. I.</creator><creator>Jovan, F. F.</creator><creator>Eka S, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Arrhythmia classification from wavelet feature on FGPA</title><author>Jatmiko, W. ; Mursanto, P. ; Febrian, A. ; Fajar, M. ; Anggoro, W. T. ; Rambe, R. S. ; Tawakal, M. I. ; Jovan, F. F. ; Eka S, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Discrete wavelet transforms</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Field programmable gate arrays</topic><topic>Random access memory</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jatmiko, W.</creatorcontrib><creatorcontrib>Mursanto, P.</creatorcontrib><creatorcontrib>Febrian, A.</creatorcontrib><creatorcontrib>Fajar, M.</creatorcontrib><creatorcontrib>Anggoro, W. T.</creatorcontrib><creatorcontrib>Rambe, R. S.</creatorcontrib><creatorcontrib>Tawakal, M. I.</creatorcontrib><creatorcontrib>Jovan, F. F.</creatorcontrib><creatorcontrib>Eka S, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jatmiko, W.</au><au>Mursanto, P.</au><au>Febrian, A.</au><au>Fajar, M.</au><au>Anggoro, W. T.</au><au>Rambe, R. S.</au><au>Tawakal, M. I.</au><au>Jovan, F. F.</au><au>Eka S, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Arrhythmia classification from wavelet feature on FGPA</atitle><btitle>2011 International Symposium on Micro-NanoMechatronics and Human Science</btitle><stitle>MHS</stitle><date>2011-11</date><risdate>2011</risdate><spage>349</spage><epage>354</epage><pages>349-354</pages><isbn>1457713608</isbn><isbn>9781457713606</isbn><eisbn>1457713616</eisbn><eisbn>9781457713613</eisbn><eisbn>1457713624</eisbn><eisbn>9781457713620</eisbn><abstract>Arrhythmia is a condition when heart beats are not beating properly, either in rhythm or in intensity. Sometimes arrhythmia problems could make patients in dangerous condition due to their sortie. However, good classification and diagnostic in arrhythmia will help many lives from fatal menace. Many different diagnostics and classifications have been conducted recently by using neural network as their classifier, both in simulation and real hardware implementation. Nevertheless, the products as an arrhythmia classifier are not small enough for daily use. Our previous research [3] succeeded making a simulation for heart beats classifier on neural network. In this research, we tried to implement it on a prototype small arrhythmia classifier on FPGA using Spartan 3AN development board.</abstract><pub>IEEE</pub><doi>10.1109/MHS.2011.6102207</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457713608
ispartof 2011 International Symposium on Micro-NanoMechatronics and Human Science, 2011, p.349-354
issn
language eng
recordid cdi_ieee_primary_6102207
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Discrete wavelet transforms
Electrocardiography
Feature extraction
Field programmable gate arrays
Random access memory
Wavelet analysis
title Arrhythmia classification from wavelet feature on FGPA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Arrhythmia%20classification%20from%20wavelet%20feature%20on%20FGPA&rft.btitle=2011%20International%20Symposium%20on%20Micro-NanoMechatronics%20and%20Human%20Science&rft.au=Jatmiko,%20W.&rft.date=2011-11&rft.spage=349&rft.epage=354&rft.pages=349-354&rft.isbn=1457713608&rft.isbn_list=9781457713606&rft_id=info:doi/10.1109/MHS.2011.6102207&rft.eisbn=1457713616&rft.eisbn_list=9781457713613&rft.eisbn_list=1457713624&rft.eisbn_list=9781457713620&rft_dat=%3Cieee_6IE%3E6102207%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-76dca0dfe53b28e45b5767697938dd1aebbce28ae03757a5084a7ac3462c34843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6102207&rfr_iscdi=true