Loading…
A comparison between divergence measures for network anomaly detection
This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tajer, J. Makke, A. Salem, O. Mehaoua, A. |
description | This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are investigated in terms of true positive and false alarm ratio. A particular focus will be on how to use these measures over Sketch data structure, and which measure provides the best detection accuracy. We conduct performance analysis over publicly available real IP traces (MAWI) collected from the WIDE backbone network. Our experimental results show that Chi-square divergence outperforms Hellinger distance in network anomalies detection. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6104013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6104013</ieee_id><sourcerecordid>6104013</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-80bd7a74e2769b510af818d1bc6d848912ab8fa60fef7b30742d6c7ed8a2e23</originalsourceid><addsrcrecordid>eNotjM1KAzEYACMqWGufwEteYCH_-XIsxapQEMR7STZfJNpNSrIqfXsLeprDDHNBbqVjHEAoBZdk5Sxwpa3lGkBdkYXgRg_OMH1DVr1_MMbkOXagF2S7pmOdjr7lXgsNOP8gFhrzN7Z3LCPSCX3_athpqo2Ws6_tk_pSJ3840YgzjnOu5Y5cJ3_ouPrnkrxuH942T8Pu5fF5s94N2bF5ABai9VahsMYFzZlPwCHyMJoIChwXPkDyhiVMNkhmlYhmtBjBCxRySe7_phkR98eWJ99Oe8OZYlzKX95oSV4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A comparison between divergence measures for network anomaly detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tajer, J. ; Makke, A. ; Salem, O. ; Mehaoua, A.</creator><creatorcontrib>Tajer, J. ; Makke, A. ; Salem, O. ; Mehaoua, A.</creatorcontrib><description>This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are investigated in terms of true positive and false alarm ratio. A particular focus will be on how to use these measures over Sketch data structure, and which measure provides the best detection accuracy. We conduct performance analysis over publicly available real IP traces (MAWI) collected from the WIDE backbone network. Our experimental results show that Chi-square divergence outperforms Hellinger distance in network anomalies detection.</description><identifier>ISSN: 2165-9605</identifier><identifier>ISBN: 9781457715884</identifier><identifier>ISBN: 1457715880</identifier><identifier>EISBN: 3901882448</identifier><identifier>EISBN: 9783901882449</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Chi-Square Divergence ; Data structures ; DDoS ; Hellinger Distance ; High definition video ; IP networks ; K-ary Sketch ; Probability distribution ; Radiation detectors ; TCP SYN Flooding ; Time series analysis</subject><ispartof>2011 7th International Conference on Network and Service Management, 2011, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6104013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6104013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tajer, J.</creatorcontrib><creatorcontrib>Makke, A.</creatorcontrib><creatorcontrib>Salem, O.</creatorcontrib><creatorcontrib>Mehaoua, A.</creatorcontrib><title>A comparison between divergence measures for network anomaly detection</title><title>2011 7th International Conference on Network and Service Management</title><addtitle>CNSM</addtitle><description>This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are investigated in terms of true positive and false alarm ratio. A particular focus will be on how to use these measures over Sketch data structure, and which measure provides the best detection accuracy. We conduct performance analysis over publicly available real IP traces (MAWI) collected from the WIDE backbone network. Our experimental results show that Chi-square divergence outperforms Hellinger distance in network anomalies detection.</description><subject>Accuracy</subject><subject>Chi-Square Divergence</subject><subject>Data structures</subject><subject>DDoS</subject><subject>Hellinger Distance</subject><subject>High definition video</subject><subject>IP networks</subject><subject>K-ary Sketch</subject><subject>Probability distribution</subject><subject>Radiation detectors</subject><subject>TCP SYN Flooding</subject><subject>Time series analysis</subject><issn>2165-9605</issn><isbn>9781457715884</isbn><isbn>1457715880</isbn><isbn>3901882448</isbn><isbn>9783901882449</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM1KAzEYACMqWGufwEteYCH_-XIsxapQEMR7STZfJNpNSrIqfXsLeprDDHNBbqVjHEAoBZdk5Sxwpa3lGkBdkYXgRg_OMH1DVr1_MMbkOXagF2S7pmOdjr7lXgsNOP8gFhrzN7Z3LCPSCX3_athpqo2Ws6_tk_pSJ3840YgzjnOu5Y5cJ3_ouPrnkrxuH942T8Pu5fF5s94N2bF5ABai9VahsMYFzZlPwCHyMJoIChwXPkDyhiVMNkhmlYhmtBjBCxRySe7_phkR98eWJ99Oe8OZYlzKX95oSV4</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Tajer, J.</creator><creator>Makke, A.</creator><creator>Salem, O.</creator><creator>Mehaoua, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>A comparison between divergence measures for network anomaly detection</title><author>Tajer, J. ; Makke, A. ; Salem, O. ; Mehaoua, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-80bd7a74e2769b510af818d1bc6d848912ab8fa60fef7b30742d6c7ed8a2e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Chi-Square Divergence</topic><topic>Data structures</topic><topic>DDoS</topic><topic>Hellinger Distance</topic><topic>High definition video</topic><topic>IP networks</topic><topic>K-ary Sketch</topic><topic>Probability distribution</topic><topic>Radiation detectors</topic><topic>TCP SYN Flooding</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tajer, J.</creatorcontrib><creatorcontrib>Makke, A.</creatorcontrib><creatorcontrib>Salem, O.</creatorcontrib><creatorcontrib>Mehaoua, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tajer, J.</au><au>Makke, A.</au><au>Salem, O.</au><au>Mehaoua, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A comparison between divergence measures for network anomaly detection</atitle><btitle>2011 7th International Conference on Network and Service Management</btitle><stitle>CNSM</stitle><date>2011-10</date><risdate>2011</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>2165-9605</issn><isbn>9781457715884</isbn><isbn>1457715880</isbn><eisbn>3901882448</eisbn><eisbn>9783901882449</eisbn><abstract>This paper deals with the detection of flooding attacks which are the most common type of Denial of Service (DoS) attacks. We compare 2 divergence measures (Hellinger distance and Chi-square divergence) to analyze their detection accuracy. The performance of these statistical divergence measures are investigated in terms of true positive and false alarm ratio. A particular focus will be on how to use these measures over Sketch data structure, and which measure provides the best detection accuracy. We conduct performance analysis over publicly available real IP traces (MAWI) collected from the WIDE backbone network. Our experimental results show that Chi-square divergence outperforms Hellinger distance in network anomalies detection.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2165-9605 |
ispartof | 2011 7th International Conference on Network and Service Management, 2011, p.1-5 |
issn | 2165-9605 |
language | eng |
recordid | cdi_ieee_primary_6104013 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Chi-Square Divergence Data structures DDoS Hellinger Distance High definition video IP networks K-ary Sketch Probability distribution Radiation detectors TCP SYN Flooding Time series analysis |
title | A comparison between divergence measures for network anomaly detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20comparison%20between%20divergence%20measures%20for%20network%20anomaly%20detection&rft.btitle=2011%207th%20International%20Conference%20on%20Network%20and%20Service%20Management&rft.au=Tajer,%20J.&rft.date=2011-10&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=2165-9605&rft.isbn=9781457715884&rft.isbn_list=1457715880&rft_id=info:doi/&rft.eisbn=3901882448&rft.eisbn_list=9783901882449&rft_dat=%3Cieee_6IE%3E6104013%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-80bd7a74e2769b510af818d1bc6d848912ab8fa60fef7b30742d6c7ed8a2e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6104013&rfr_iscdi=true |