Loading…
Self-organizing segmentation for house object
Clustering is the basic and first step of a process in many different fields. Clustering has been researched for many years. K-means clustering method is one of famous algorithms. However it cannot determine how many clusters are needed. This algorithm overcomes a disadvantage of other clustering al...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1084 |
container_issue | |
container_start_page | 1082 |
container_title | |
container_volume | |
creator | Moonju Lee Sukhan Lee |
description | Clustering is the basic and first step of a process in many different fields. Clustering has been researched for many years. K-means clustering method is one of famous algorithms. However it cannot determine how many clusters are needed. This algorithm overcomes a disadvantage of other clustering algorithms. This paper presents a new method. Our algorithm can choose clustering number automatically. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6106320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6106320</ieee_id><sourcerecordid>6106320</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-feb86ce3172d77f4a2ab5d7ffa82d6ae3568777729390610a93561ebf34152283</originalsourceid><addsrcrecordid>eNotjMtqwzAQRRXaQJM0X9CNf0AwmrFeyxD6gkAWzT7I8chVSKxguYv262toz-bC4XJmYum8J1QaCO7EUtXaWnCk6V4sEDxJq1A9iHUpZ5gwxgPVCyE_-BJlHrrQp5_Ud1Xh7sr9GMaU-yrmofrMX4Wr3Jz5ND6KeQyXwuv_XYnDy_Nh-yZ3-9f37WYnk4dRRm6cOTEpi621sQ4YGt3aGIPD1gQmbZydQE8ejILgJ6O4iVQrjehoJZ7-somZj7chXcPwfZyehhDoF4S1PqY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-organizing segmentation for house object</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Moonju Lee ; Sukhan Lee</creator><creatorcontrib>Moonju Lee ; Sukhan Lee</creatorcontrib><description>Clustering is the basic and first step of a process in many different fields. Clustering has been researched for many years. K-means clustering method is one of famous algorithms. However it cannot determine how many clusters are needed. This algorithm overcomes a disadvantage of other clustering algorithms. This paper presents a new method. Our algorithm can choose clustering number automatically.</description><identifier>ISSN: 2093-7121</identifier><identifier>ISBN: 1457708353</identifier><identifier>ISBN: 9781457708350</identifier><identifier>EISBN: 8993215030</identifier><identifier>EISBN: 9788993215038</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering ; Clustering algorithms ; Educational institutions ; Image segmentation ; Indexes ; Object segmentation ; Partitioning algorithms ; Segmentation ; Shape</subject><ispartof>2011 11th International Conference on Control, Automation and Systems, 2011, p.1082-1084</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6106320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6106320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moonju Lee</creatorcontrib><creatorcontrib>Sukhan Lee</creatorcontrib><title>Self-organizing segmentation for house object</title><title>2011 11th International Conference on Control, Automation and Systems</title><addtitle>ICCAS</addtitle><description>Clustering is the basic and first step of a process in many different fields. Clustering has been researched for many years. K-means clustering method is one of famous algorithms. However it cannot determine how many clusters are needed. This algorithm overcomes a disadvantage of other clustering algorithms. This paper presents a new method. Our algorithm can choose clustering number automatically.</description><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Educational institutions</subject><subject>Image segmentation</subject><subject>Indexes</subject><subject>Object segmentation</subject><subject>Partitioning algorithms</subject><subject>Segmentation</subject><subject>Shape</subject><issn>2093-7121</issn><isbn>1457708353</isbn><isbn>9781457708350</isbn><isbn>8993215030</isbn><isbn>9788993215038</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtqwzAQRRXaQJM0X9CNf0AwmrFeyxD6gkAWzT7I8chVSKxguYv262toz-bC4XJmYum8J1QaCO7EUtXaWnCk6V4sEDxJq1A9iHUpZ5gwxgPVCyE_-BJlHrrQp5_Ud1Xh7sr9GMaU-yrmofrMX4Wr3Jz5ND6KeQyXwuv_XYnDy_Nh-yZ3-9f37WYnk4dRRm6cOTEpi621sQ4YGt3aGIPD1gQmbZydQE8ejILgJ6O4iVQrjehoJZ7-somZj7chXcPwfZyehhDoF4S1PqY</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Moonju Lee</creator><creator>Sukhan Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>Self-organizing segmentation for house object</title><author>Moonju Lee ; Sukhan Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-feb86ce3172d77f4a2ab5d7ffa82d6ae3568777729390610a93561ebf34152283</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Educational institutions</topic><topic>Image segmentation</topic><topic>Indexes</topic><topic>Object segmentation</topic><topic>Partitioning algorithms</topic><topic>Segmentation</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Moonju Lee</creatorcontrib><creatorcontrib>Sukhan Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moonju Lee</au><au>Sukhan Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-organizing segmentation for house object</atitle><btitle>2011 11th International Conference on Control, Automation and Systems</btitle><stitle>ICCAS</stitle><date>2011-10</date><risdate>2011</risdate><spage>1082</spage><epage>1084</epage><pages>1082-1084</pages><issn>2093-7121</issn><isbn>1457708353</isbn><isbn>9781457708350</isbn><eisbn>8993215030</eisbn><eisbn>9788993215038</eisbn><abstract>Clustering is the basic and first step of a process in many different fields. Clustering has been researched for many years. K-means clustering method is one of famous algorithms. However it cannot determine how many clusters are needed. This algorithm overcomes a disadvantage of other clustering algorithms. This paper presents a new method. Our algorithm can choose clustering number automatically.</abstract><pub>IEEE</pub><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2093-7121 |
ispartof | 2011 11th International Conference on Control, Automation and Systems, 2011, p.1082-1084 |
issn | 2093-7121 |
language | eng |
recordid | cdi_ieee_primary_6106320 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering Clustering algorithms Educational institutions Image segmentation Indexes Object segmentation Partitioning algorithms Segmentation Shape |
title | Self-organizing segmentation for house object |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-organizing%20segmentation%20for%20house%20object&rft.btitle=2011%2011th%20International%20Conference%20on%20Control,%20Automation%20and%20Systems&rft.au=Moonju%20Lee&rft.date=2011-10&rft.spage=1082&rft.epage=1084&rft.pages=1082-1084&rft.issn=2093-7121&rft.isbn=1457708353&rft.isbn_list=9781457708350&rft_id=info:doi/&rft.eisbn=8993215030&rft.eisbn_list=9788993215038&rft_dat=%3Cieee_6IE%3E6106320%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-feb86ce3172d77f4a2ab5d7ffa82d6ae3568777729390610a93561ebf34152283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6106320&rfr_iscdi=true |