Loading…
Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation
The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pfingsthorn, M. Birk, A. Vaskevicius, N. |
description | The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended. |
doi_str_mv | 10.23919/OCEANS.2011.6107122 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6107122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6107122</ieee_id><sourcerecordid>6107122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3</originalsourceid><addsrcrecordid>eNotkMtOwzAURI0AiVL6BbDwD6T4lTpeVqU8pIou2n11E18XS40dOQ6of08EXY00ozPSDCFPnM2FNNw8b1fr5eduLhjn8wVnmgtxRWZGV8xIaUotTXVN7rkqteZKaHFDJowbXWhZlXdk1ve-HtEF47IyE-J32ELIvqEQQsyQfQw0OnpMcQh2NC39xiNegnzusKc-UPlCW-h66mKiMOQYYhuHno4Iph_ImEbqyzcnpLHD9Ac_kFsHpx5nF52S_et6v3ovNtu3j9VyU3jDcqG0K8EiN06hq3iNTYlCANTC2cZYa7HSTa1LhjVoq8aVowsCFKoFArdySh7_az0iHrrkW0jnw-Uo-QtKaV7s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</creator><creatorcontrib>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</creatorcontrib><description>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</description><identifier>ISSN: 0197-7385</identifier><identifier>ISBN: 1457714272</identifier><identifier>ISBN: 9781457714276</identifier><identifier>EISBN: 9780933957398</identifier><identifier>EISBN: 0933957394</identifier><identifier>DOI: 10.23919/OCEANS.2011.6107122</identifier><language>eng</language><publisher>IEEE</publisher><subject>Robot sensing systems ; Rocks ; Sea surface ; Semantics ; Three dimensional displays ; Vegetation mapping</subject><ispartof>OCEANS'11 MTS/IEEE KONA, 2011, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6107122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6107122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><title>OCEANS'11 MTS/IEEE KONA</title><addtitle>OCEANS</addtitle><description>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</description><subject>Robot sensing systems</subject><subject>Rocks</subject><subject>Sea surface</subject><subject>Semantics</subject><subject>Three dimensional displays</subject><subject>Vegetation mapping</subject><issn>0197-7385</issn><isbn>1457714272</isbn><isbn>9781457714276</isbn><isbn>9780933957398</isbn><isbn>0933957394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURI0AiVL6BbDwD6T4lTpeVqU8pIou2n11E18XS40dOQ6of08EXY00ozPSDCFPnM2FNNw8b1fr5eduLhjn8wVnmgtxRWZGV8xIaUotTXVN7rkqteZKaHFDJowbXWhZlXdk1ve-HtEF47IyE-J32ELIvqEQQsyQfQw0OnpMcQh2NC39xiNegnzusKc-UPlCW-h66mKiMOQYYhuHno4Iph_ImEbqyzcnpLHD9Ac_kFsHpx5nF52S_et6v3ovNtu3j9VyU3jDcqG0K8EiN06hq3iNTYlCANTC2cZYa7HSTa1LhjVoq8aVowsCFKoFArdySh7_az0iHrrkW0jnw-Uo-QtKaV7s</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Pfingsthorn, M.</creator><creator>Birk, A.</creator><creator>Vaskevicius, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><author>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Robot sensing systems</topic><topic>Rocks</topic><topic>Sea surface</topic><topic>Semantics</topic><topic>Three dimensional displays</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pfingsthorn, M.</au><au>Birk, A.</au><au>Vaskevicius, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</atitle><btitle>OCEANS'11 MTS/IEEE KONA</btitle><stitle>OCEANS</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0197-7385</issn><isbn>1457714272</isbn><isbn>9781457714276</isbn><eisbn>9780933957398</eisbn><eisbn>0933957394</eisbn><abstract>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</abstract><pub>IEEE</pub><doi>10.23919/OCEANS.2011.6107122</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0197-7385 |
ispartof | OCEANS'11 MTS/IEEE KONA, 2011, p.1-8 |
issn | 0197-7385 |
language | eng |
recordid | cdi_ieee_primary_6107122 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Robot sensing systems Rocks Sea surface Semantics Three dimensional displays Vegetation mapping |
title | Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantic%20annotation%20of%20ground%20and%20vegetation%20types%20in%203D%20maps%20for%20autonomous%20underwater%20vehicle%20operation&rft.btitle=OCEANS'11%20MTS/IEEE%20KONA&rft.au=Pfingsthorn,%20M.&rft.date=2011-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0197-7385&rft.isbn=1457714272&rft.isbn_list=9781457714276&rft_id=info:doi/10.23919/OCEANS.2011.6107122&rft.eisbn=9780933957398&rft.eisbn_list=0933957394&rft_dat=%3Cieee_6IE%3E6107122%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6107122&rfr_iscdi=true |