Loading…

Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation

The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud...

Full description

Saved in:
Bibliographic Details
Main Authors: Pfingsthorn, M., Birk, A., Vaskevicius, N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Pfingsthorn, M.
Birk, A.
Vaskevicius, N.
description The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.
doi_str_mv 10.23919/OCEANS.2011.6107122
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6107122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6107122</ieee_id><sourcerecordid>6107122</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3</originalsourceid><addsrcrecordid>eNotkMtOwzAURI0AiVL6BbDwD6T4lTpeVqU8pIou2n11E18XS40dOQ6of08EXY00ozPSDCFPnM2FNNw8b1fr5eduLhjn8wVnmgtxRWZGV8xIaUotTXVN7rkqteZKaHFDJowbXWhZlXdk1ve-HtEF47IyE-J32ELIvqEQQsyQfQw0OnpMcQh2NC39xiNegnzusKc-UPlCW-h66mKiMOQYYhuHno4Iph_ImEbqyzcnpLHD9Ac_kFsHpx5nF52S_et6v3ovNtu3j9VyU3jDcqG0K8EiN06hq3iNTYlCANTC2cZYa7HSTa1LhjVoq8aVowsCFKoFArdySh7_az0iHrrkW0jnw-Uo-QtKaV7s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</creator><creatorcontrib>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</creatorcontrib><description>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</description><identifier>ISSN: 0197-7385</identifier><identifier>ISBN: 1457714272</identifier><identifier>ISBN: 9781457714276</identifier><identifier>EISBN: 9780933957398</identifier><identifier>EISBN: 0933957394</identifier><identifier>DOI: 10.23919/OCEANS.2011.6107122</identifier><language>eng</language><publisher>IEEE</publisher><subject>Robot sensing systems ; Rocks ; Sea surface ; Semantics ; Three dimensional displays ; Vegetation mapping</subject><ispartof>OCEANS'11 MTS/IEEE KONA, 2011, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6107122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6107122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><title>OCEANS'11 MTS/IEEE KONA</title><addtitle>OCEANS</addtitle><description>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</description><subject>Robot sensing systems</subject><subject>Rocks</subject><subject>Sea surface</subject><subject>Semantics</subject><subject>Three dimensional displays</subject><subject>Vegetation mapping</subject><issn>0197-7385</issn><isbn>1457714272</isbn><isbn>9781457714276</isbn><isbn>9780933957398</isbn><isbn>0933957394</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURI0AiVL6BbDwD6T4lTpeVqU8pIou2n11E18XS40dOQ6of08EXY00ozPSDCFPnM2FNNw8b1fr5eduLhjn8wVnmgtxRWZGV8xIaUotTXVN7rkqteZKaHFDJowbXWhZlXdk1ve-HtEF47IyE-J32ELIvqEQQsyQfQw0OnpMcQh2NC39xiNegnzusKc-UPlCW-h66mKiMOQYYhuHno4Iph_ImEbqyzcnpLHD9Ac_kFsHpx5nF52S_et6v3ovNtu3j9VyU3jDcqG0K8EiN06hq3iNTYlCANTC2cZYa7HSTa1LhjVoq8aVowsCFKoFArdySh7_az0iHrrkW0jnw-Uo-QtKaV7s</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Pfingsthorn, M.</creator><creator>Birk, A.</creator><creator>Vaskevicius, N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201109</creationdate><title>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</title><author>Pfingsthorn, M. ; Birk, A. ; Vaskevicius, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Robot sensing systems</topic><topic>Rocks</topic><topic>Sea surface</topic><topic>Semantics</topic><topic>Three dimensional displays</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfingsthorn, M.</creatorcontrib><creatorcontrib>Birk, A.</creatorcontrib><creatorcontrib>Vaskevicius, N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pfingsthorn, M.</au><au>Birk, A.</au><au>Vaskevicius, N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation</atitle><btitle>OCEANS'11 MTS/IEEE KONA</btitle><stitle>OCEANS</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0197-7385</issn><isbn>1457714272</isbn><isbn>9781457714276</isbn><eisbn>9780933957398</eisbn><eisbn>0933957394</eisbn><abstract>The semantic annotation of 3D maps generated by an Autonomous Underwater Vehicle (AUV) is presented. Two different methods are used for this purpose. First, a fitting of large planar patches plus an analysis of the plane normals is proposed. Second, a local analysis of the normals on the point cloud level is employed. Both methods complement each other. While the first captures large scale environment structures like the sea floor, cliffs, and (man-made) walls, the second is targeted at smaller, locally non-planar, elements like vegetation and rocks. The semantic 3D mapping is evaluated in a high-fidelity simulator where it is shown that the two methods are very fast and work as intended.</abstract><pub>IEEE</pub><doi>10.23919/OCEANS.2011.6107122</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0197-7385
ispartof OCEANS'11 MTS/IEEE KONA, 2011, p.1-8
issn 0197-7385
language eng
recordid cdi_ieee_primary_6107122
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Robot sensing systems
Rocks
Sea surface
Semantics
Three dimensional displays
Vegetation mapping
title Semantic annotation of ground and vegetation types in 3D maps for autonomous underwater vehicle operation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semantic%20annotation%20of%20ground%20and%20vegetation%20types%20in%203D%20maps%20for%20autonomous%20underwater%20vehicle%20operation&rft.btitle=OCEANS'11%20MTS/IEEE%20KONA&rft.au=Pfingsthorn,%20M.&rft.date=2011-09&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0197-7385&rft.isbn=1457714272&rft.isbn_list=9781457714276&rft_id=info:doi/10.23919/OCEANS.2011.6107122&rft.eisbn=9780933957398&rft.eisbn_list=0933957394&rft_dat=%3Cieee_6IE%3E6107122%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-47f5ade19f4ef81bec5e22aab2fdc9ddde87cb750eba7d4457c9da2a4e46ea1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6107122&rfr_iscdi=true