Loading…
Fuzzy neural networks stability in terms of the number of hidden layers
This paper introduces an approach for studying the stability, and generalization capability of one and two hidden layer Fuzzy Flip-Flop based Neural Networks (FNNs) with various fuzzy operators. By employing fuzzy flip-flop neurons as sigmoid function generators, novel function approximators are est...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 328 |
container_issue | |
container_start_page | 323 |
container_title | |
container_volume | |
creator | Lovassy, R. Koczy, L. T. Gal, L. Rudas, I. J. |
description | This paper introduces an approach for studying the stability, and generalization capability of one and two hidden layer Fuzzy Flip-Flop based Neural Networks (FNNs) with various fuzzy operators. By employing fuzzy flip-flop neurons as sigmoid function generators, novel function approximators are established that also avoid overfitting in the case of test data containing noisy items in the form of outliers. It is shown, by comparing with existing standard tansig function based approaches that reducing the network complexity networks with comparable stability are obtained. Finally, examples are given to illustrate the effect of the hidden layer number of neural networks. |
doi_str_mv | 10.1109/CINTI.2011.6108523 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6108523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6108523</ieee_id><sourcerecordid>6108523</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2718ad757e282747b619f5d8fbf566cafda27a1406e37d542aa599876edc237c3</originalsourceid><addsrcrecordid>eNpFj8tKw0AYRkdEUGtfQDfzAolzvywl2FoousnCXZlk_tDRJJWZCZI-vRULfpvD2Rz4ELqnpKSU2Mdq81pvSkYoLRUlRjJ-gW6pkFoTIuT75b8Ieo2WKX2Q05Qy1vIbtF5Nx-OMR5ii60_I34f4mXDKrgl9yDMOI84Qh4QPHc57wOM0NBB_bR-8hxH3boaY7tBV5_oEyzMXqF4919VLsX1bb6qnbREsyQXT1DivpQZmmBa6UdR20puu6aRSreu8Y9pRQRRw7aVgzklrjVbgW8Z1yxfo4S8bAGD3FcPg4rw7_-Y_xfVMlw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fuzzy neural networks stability in terms of the number of hidden layers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lovassy, R. ; Koczy, L. T. ; Gal, L. ; Rudas, I. J.</creator><creatorcontrib>Lovassy, R. ; Koczy, L. T. ; Gal, L. ; Rudas, I. J.</creatorcontrib><description>This paper introduces an approach for studying the stability, and generalization capability of one and two hidden layer Fuzzy Flip-Flop based Neural Networks (FNNs) with various fuzzy operators. By employing fuzzy flip-flop neurons as sigmoid function generators, novel function approximators are established that also avoid overfitting in the case of test data containing noisy items in the form of outliers. It is shown, by comparing with existing standard tansig function based approaches that reducing the network complexity networks with comparable stability are obtained. Finally, examples are given to illustrate the effect of the hidden layer number of neural networks.</description><identifier>ISBN: 1457700441</identifier><identifier>ISBN: 9781457700446</identifier><identifier>EISBN: 145770045X</identifier><identifier>EISBN: 1457700433</identifier><identifier>EISBN: 9781457700453</identifier><identifier>EISBN: 9781457700439</identifier><identifier>DOI: 10.1109/CINTI.2011.6108523</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Flip-flops ; Function approximation ; Fuzzy neural networks ; Neurons</subject><ispartof>2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011, p.323-328</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6108523$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6108523$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lovassy, R.</creatorcontrib><creatorcontrib>Koczy, L. T.</creatorcontrib><creatorcontrib>Gal, L.</creatorcontrib><creatorcontrib>Rudas, I. J.</creatorcontrib><title>Fuzzy neural networks stability in terms of the number of hidden layers</title><title>2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI)</title><addtitle>CINTI</addtitle><description>This paper introduces an approach for studying the stability, and generalization capability of one and two hidden layer Fuzzy Flip-Flop based Neural Networks (FNNs) with various fuzzy operators. By employing fuzzy flip-flop neurons as sigmoid function generators, novel function approximators are established that also avoid overfitting in the case of test data containing noisy items in the form of outliers. It is shown, by comparing with existing standard tansig function based approaches that reducing the network complexity networks with comparable stability are obtained. Finally, examples are given to illustrate the effect of the hidden layer number of neural networks.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Flip-flops</subject><subject>Function approximation</subject><subject>Fuzzy neural networks</subject><subject>Neurons</subject><isbn>1457700441</isbn><isbn>9781457700446</isbn><isbn>145770045X</isbn><isbn>1457700433</isbn><isbn>9781457700453</isbn><isbn>9781457700439</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj8tKw0AYRkdEUGtfQDfzAolzvywl2FoousnCXZlk_tDRJJWZCZI-vRULfpvD2Rz4ELqnpKSU2Mdq81pvSkYoLRUlRjJ-gW6pkFoTIuT75b8Ieo2WKX2Q05Qy1vIbtF5Nx-OMR5ii60_I34f4mXDKrgl9yDMOI84Qh4QPHc57wOM0NBB_bR-8hxH3boaY7tBV5_oEyzMXqF4919VLsX1bb6qnbREsyQXT1DivpQZmmBa6UdR20puu6aRSreu8Y9pRQRRw7aVgzklrjVbgW8Z1yxfo4S8bAGD3FcPg4rw7_-Y_xfVMlw</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Lovassy, R.</creator><creator>Koczy, L. T.</creator><creator>Gal, L.</creator><creator>Rudas, I. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>Fuzzy neural networks stability in terms of the number of hidden layers</title><author>Lovassy, R. ; Koczy, L. T. ; Gal, L. ; Rudas, I. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2718ad757e282747b619f5d8fbf566cafda27a1406e37d542aa599876edc237c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Flip-flops</topic><topic>Function approximation</topic><topic>Fuzzy neural networks</topic><topic>Neurons</topic><toplevel>online_resources</toplevel><creatorcontrib>Lovassy, R.</creatorcontrib><creatorcontrib>Koczy, L. T.</creatorcontrib><creatorcontrib>Gal, L.</creatorcontrib><creatorcontrib>Rudas, I. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lovassy, R.</au><au>Koczy, L. T.</au><au>Gal, L.</au><au>Rudas, I. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fuzzy neural networks stability in terms of the number of hidden layers</atitle><btitle>2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI)</btitle><stitle>CINTI</stitle><date>2011-11</date><risdate>2011</risdate><spage>323</spage><epage>328</epage><pages>323-328</pages><isbn>1457700441</isbn><isbn>9781457700446</isbn><eisbn>145770045X</eisbn><eisbn>1457700433</eisbn><eisbn>9781457700453</eisbn><eisbn>9781457700439</eisbn><abstract>This paper introduces an approach for studying the stability, and generalization capability of one and two hidden layer Fuzzy Flip-Flop based Neural Networks (FNNs) with various fuzzy operators. By employing fuzzy flip-flop neurons as sigmoid function generators, novel function approximators are established that also avoid overfitting in the case of test data containing noisy items in the form of outliers. It is shown, by comparing with existing standard tansig function based approaches that reducing the network complexity networks with comparable stability are obtained. Finally, examples are given to illustrate the effect of the hidden layer number of neural networks.</abstract><pub>IEEE</pub><doi>10.1109/CINTI.2011.6108523</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457700441 |
ispartof | 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011, p.323-328 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6108523 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Biological neural networks Flip-flops Function approximation Fuzzy neural networks Neurons |
title | Fuzzy neural networks stability in terms of the number of hidden layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A38%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fuzzy%20neural%20networks%20stability%20in%20terms%20of%20the%20number%20of%20hidden%20layers&rft.btitle=2011%20IEEE%2012th%20International%20Symposium%20on%20Computational%20Intelligence%20and%20Informatics%20(CINTI)&rft.au=Lovassy,%20R.&rft.date=2011-11&rft.spage=323&rft.epage=328&rft.pages=323-328&rft.isbn=1457700441&rft.isbn_list=9781457700446&rft_id=info:doi/10.1109/CINTI.2011.6108523&rft.eisbn=145770045X&rft.eisbn_list=1457700433&rft.eisbn_list=9781457700453&rft.eisbn_list=9781457700439&rft_dat=%3Cieee_6IE%3E6108523%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-2718ad757e282747b619f5d8fbf566cafda27a1406e37d542aa599876edc237c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6108523&rfr_iscdi=true |