Loading…
Low Complexity Underwater Image Enhancement Based on Dark Channel Prior
Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the dep...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3 |
---|---|
cites | |
container_end_page | 20 |
container_issue | |
container_start_page | 17 |
container_title | |
container_volume | |
creator | Hung-Yu Yang Pei-Yin Chen Chien-Chuan Huang Ya-Zhu Zhuang Yeu-Horng Shiau |
description | Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time. |
doi_str_mv | 10.1109/IBICA.2011.9 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6118812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6118812</ieee_id><sourcerecordid>6118812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</originalsourceid><addsrcrecordid>eNotj7FOwzAURY0QElCysbH4BxL8bMf2G2koJVIkGOhcOckLRCRO5UQq_XsqwXSHIx2dy9g9iAxA4GO5LounTAqADC9YgtYJazDXRhh1yW5B59aCBMRrlsxzXwtprDEO4YZtq-nIi2k8DPTTLye-Cy3Fo18o8nL0n8Q34cuHhkYKC1_7mVo-Bf7s4zcvziDQwN9jP8U7dtX5Yabkf1ds97L5KF7T6m17jqvSBpRaUkVdl7ceDQqXS0kCtHaKvAPUVnuBtSLV1Q2S87X02NnzC2ytM7qxkLdqxR7-vD0R7Q-xH3087Q2AcyDVL9DCSy0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</creator><creatorcontrib>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</creatorcontrib><description>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</description><identifier>ISBN: 1457712199</identifier><identifier>ISBN: 9781457712197</identifier><identifier>EISBN: 9780769546063</identifier><identifier>EISBN: 0769546064</identifier><identifier>DOI: 10.1109/IBICA.2011.9</identifier><language>eng</language><publisher>IEEE</publisher><subject>color correction ; Complexity theory ; Computer vision ; Conferences ; dark channel prior ; Image color analysis ; Image enhancement ; Mathematical model ; MATLAB ; underwater image enhancement</subject><ispartof>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, 2011, p.17-20</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6118812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6118812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hung-Yu Yang</creatorcontrib><creatorcontrib>Pei-Yin Chen</creatorcontrib><creatorcontrib>Chien-Chuan Huang</creatorcontrib><creatorcontrib>Ya-Zhu Zhuang</creatorcontrib><creatorcontrib>Yeu-Horng Shiau</creatorcontrib><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><title>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications</title><addtitle>ibica</addtitle><description>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</description><subject>color correction</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>dark channel prior</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Mathematical model</subject><subject>MATLAB</subject><subject>underwater image enhancement</subject><isbn>1457712199</isbn><isbn>9781457712197</isbn><isbn>9780769546063</isbn><isbn>0769546064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj7FOwzAURY0QElCysbH4BxL8bMf2G2koJVIkGOhcOckLRCRO5UQq_XsqwXSHIx2dy9g9iAxA4GO5LounTAqADC9YgtYJazDXRhh1yW5B59aCBMRrlsxzXwtprDEO4YZtq-nIi2k8DPTTLye-Cy3Fo18o8nL0n8Q34cuHhkYKC1_7mVo-Bf7s4zcvziDQwN9jP8U7dtX5Yabkf1ds97L5KF7T6m17jqvSBpRaUkVdl7ceDQqXS0kCtHaKvAPUVnuBtSLV1Q2S87X02NnzC2ytM7qxkLdqxR7-vD0R7Q-xH3087Q2AcyDVL9DCSy0</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hung-Yu Yang</creator><creator>Pei-Yin Chen</creator><creator>Chien-Chuan Huang</creator><creator>Ya-Zhu Zhuang</creator><creator>Yeu-Horng Shiau</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><author>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>color correction</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>dark channel prior</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Mathematical model</topic><topic>MATLAB</topic><topic>underwater image enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Hung-Yu Yang</creatorcontrib><creatorcontrib>Pei-Yin Chen</creatorcontrib><creatorcontrib>Chien-Chuan Huang</creatorcontrib><creatorcontrib>Ya-Zhu Zhuang</creatorcontrib><creatorcontrib>Yeu-Horng Shiau</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hung-Yu Yang</au><au>Pei-Yin Chen</au><au>Chien-Chuan Huang</au><au>Ya-Zhu Zhuang</au><au>Yeu-Horng Shiau</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</atitle><btitle>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications</btitle><stitle>ibica</stitle><date>2011-12</date><risdate>2011</risdate><spage>17</spage><epage>20</epage><pages>17-20</pages><isbn>1457712199</isbn><isbn>9781457712197</isbn><eisbn>9780769546063</eisbn><eisbn>0769546064</eisbn><abstract>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</abstract><pub>IEEE</pub><doi>10.1109/IBICA.2011.9</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457712199 |
ispartof | 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, 2011, p.17-20 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6118812 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | color correction Complexity theory Computer vision Conferences dark channel prior Image color analysis Image enhancement Mathematical model MATLAB underwater image enhancement |
title | Low Complexity Underwater Image Enhancement Based on Dark Channel Prior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20Complexity%20Underwater%20Image%20Enhancement%20Based%20on%20Dark%20Channel%20Prior&rft.btitle=2011%20Second%20International%20Conference%20on%20Innovations%20in%20Bio-inspired%20Computing%20and%20Applications&rft.au=Hung-Yu%20Yang&rft.date=2011-12&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.isbn=1457712199&rft.isbn_list=9781457712197&rft_id=info:doi/10.1109/IBICA.2011.9&rft.eisbn=9780769546063&rft.eisbn_list=0769546064&rft_dat=%3Cieee_6IE%3E6118812%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6118812&rfr_iscdi=true |