Loading…

Low Complexity Underwater Image Enhancement Based on Dark Channel Prior

Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the dep...

Full description

Saved in:
Bibliographic Details
Main Authors: Hung-Yu Yang, Pei-Yin Chen, Chien-Chuan Huang, Ya-Zhu Zhuang, Yeu-Horng Shiau
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3
cites
container_end_page 20
container_issue
container_start_page 17
container_title
container_volume
creator Hung-Yu Yang
Pei-Yin Chen
Chien-Chuan Huang
Ya-Zhu Zhuang
Yeu-Horng Shiau
description Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.
doi_str_mv 10.1109/IBICA.2011.9
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6118812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6118812</ieee_id><sourcerecordid>6118812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</originalsourceid><addsrcrecordid>eNotj7FOwzAURY0QElCysbH4BxL8bMf2G2koJVIkGOhcOckLRCRO5UQq_XsqwXSHIx2dy9g9iAxA4GO5LounTAqADC9YgtYJazDXRhh1yW5B59aCBMRrlsxzXwtprDEO4YZtq-nIi2k8DPTTLye-Cy3Fo18o8nL0n8Q34cuHhkYKC1_7mVo-Bf7s4zcvziDQwN9jP8U7dtX5Yabkf1ds97L5KF7T6m17jqvSBpRaUkVdl7ceDQqXS0kCtHaKvAPUVnuBtSLV1Q2S87X02NnzC2ytM7qxkLdqxR7-vD0R7Q-xH3087Q2AcyDVL9DCSy0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</creator><creatorcontrib>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</creatorcontrib><description>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</description><identifier>ISBN: 1457712199</identifier><identifier>ISBN: 9781457712197</identifier><identifier>EISBN: 9780769546063</identifier><identifier>EISBN: 0769546064</identifier><identifier>DOI: 10.1109/IBICA.2011.9</identifier><language>eng</language><publisher>IEEE</publisher><subject>color correction ; Complexity theory ; Computer vision ; Conferences ; dark channel prior ; Image color analysis ; Image enhancement ; Mathematical model ; MATLAB ; underwater image enhancement</subject><ispartof>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, 2011, p.17-20</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6118812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6118812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hung-Yu Yang</creatorcontrib><creatorcontrib>Pei-Yin Chen</creatorcontrib><creatorcontrib>Chien-Chuan Huang</creatorcontrib><creatorcontrib>Ya-Zhu Zhuang</creatorcontrib><creatorcontrib>Yeu-Horng Shiau</creatorcontrib><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><title>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications</title><addtitle>ibica</addtitle><description>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</description><subject>color correction</subject><subject>Complexity theory</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>dark channel prior</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Mathematical model</subject><subject>MATLAB</subject><subject>underwater image enhancement</subject><isbn>1457712199</isbn><isbn>9781457712197</isbn><isbn>9780769546063</isbn><isbn>0769546064</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj7FOwzAURY0QElCysbH4BxL8bMf2G2koJVIkGOhcOckLRCRO5UQq_XsqwXSHIx2dy9g9iAxA4GO5LounTAqADC9YgtYJazDXRhh1yW5B59aCBMRrlsxzXwtprDEO4YZtq-nIi2k8DPTTLye-Cy3Fo18o8nL0n8Q34cuHhkYKC1_7mVo-Bf7s4zcvziDQwN9jP8U7dtX5Yabkf1ds97L5KF7T6m17jqvSBpRaUkVdl7ceDQqXS0kCtHaKvAPUVnuBtSLV1Q2S87X02NnzC2ytM7qxkLdqxR7-vD0R7Q-xH3087Q2AcyDVL9DCSy0</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hung-Yu Yang</creator><creator>Pei-Yin Chen</creator><creator>Chien-Chuan Huang</creator><creator>Ya-Zhu Zhuang</creator><creator>Yeu-Horng Shiau</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</title><author>Hung-Yu Yang ; Pei-Yin Chen ; Chien-Chuan Huang ; Ya-Zhu Zhuang ; Yeu-Horng Shiau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>color correction</topic><topic>Complexity theory</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>dark channel prior</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Mathematical model</topic><topic>MATLAB</topic><topic>underwater image enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Hung-Yu Yang</creatorcontrib><creatorcontrib>Pei-Yin Chen</creatorcontrib><creatorcontrib>Chien-Chuan Huang</creatorcontrib><creatorcontrib>Ya-Zhu Zhuang</creatorcontrib><creatorcontrib>Yeu-Horng Shiau</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hung-Yu Yang</au><au>Pei-Yin Chen</au><au>Chien-Chuan Huang</au><au>Ya-Zhu Zhuang</au><au>Yeu-Horng Shiau</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Low Complexity Underwater Image Enhancement Based on Dark Channel Prior</atitle><btitle>2011 Second International Conference on Innovations in Bio-inspired Computing and Applications</btitle><stitle>ibica</stitle><date>2011-12</date><risdate>2011</risdate><spage>17</spage><epage>20</epage><pages>17-20</pages><isbn>1457712199</isbn><isbn>9781457712197</isbn><eisbn>9780769546063</eisbn><eisbn>0769546064</eisbn><abstract>Blurred underwater image is always an annoying problem in the oceanic engineering. In this paper, we propose an efficient and low complexity underwater image enhancement method based on dark channel prior. Our method employs the median filter instead of the soft matting procedure to estimate the depth map of image. Moreover, a color correction method is adopted to enhance the color contrast for underwater image. The experimental results show that the proposed approach can effectively enhance the underwater image and reduce the execution time. Besides, this method requires less computing resource and is well suitable for implementing on the surveillance and underwater navigation in real time.</abstract><pub>IEEE</pub><doi>10.1109/IBICA.2011.9</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457712199
ispartof 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications, 2011, p.17-20
issn
language eng
recordid cdi_ieee_primary_6118812
source IEEE Electronic Library (IEL) Conference Proceedings
subjects color correction
Complexity theory
Computer vision
Conferences
dark channel prior
Image color analysis
Image enhancement
Mathematical model
MATLAB
underwater image enhancement
title Low Complexity Underwater Image Enhancement Based on Dark Channel Prior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Low%20Complexity%20Underwater%20Image%20Enhancement%20Based%20on%20Dark%20Channel%20Prior&rft.btitle=2011%20Second%20International%20Conference%20on%20Innovations%20in%20Bio-inspired%20Computing%20and%20Applications&rft.au=Hung-Yu%20Yang&rft.date=2011-12&rft.spage=17&rft.epage=20&rft.pages=17-20&rft.isbn=1457712199&rft.isbn_list=9781457712197&rft_id=info:doi/10.1109/IBICA.2011.9&rft.eisbn=9780769546063&rft.eisbn_list=0769546064&rft_dat=%3Cieee_6IE%3E6118812%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c133t-3eff5da96908522e014483ea819474a09b3e3fbc9e8ab2a9f75469d7864c715d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6118812&rfr_iscdi=true