Loading…
An optimal fuzzy logic controller for an underactuated unicycle
In this paper, we propose a hybrid design method for fuzzy logic controller (FLC), where the control objective for unicycle is to achieve velocity control of the wheel while keep the pendulum at the balanced position that is an unstable equilibrium. The hybrid design consists of three phases. First,...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2340 |
container_issue | |
container_start_page | 2335 |
container_title | |
container_volume | |
creator | Jian-Xin Xu Zhao-Qin Guo Tong Heng Lee |
description | In this paper, we propose a hybrid design method for fuzzy logic controller (FLC), where the control objective for unicycle is to achieve velocity control of the wheel while keep the pendulum at the balanced position that is an unstable equilibrium. The hybrid design consists of three phases. First, FLC structure including the number of rules, membership function, inference, and parametric relations, are chosen based on heuristic knowledge about the unicycle. Then, based on a linearized model and linear feedback, the output parameters of FLC are determined quantitatively for the stabilization of the unicycle. Next, fine tuning of FLC output parameters are carried out using an iterative learning tuning (ILT) algorithm, where ILT iteratively minimizes an objective function that specifies the desired unicycle performance. The rationale of introducing the hybrid FLC design is to fully utilize available information, which is achieved by combining model-based and model-free designs, hence improve FLC performance. Through intensive simulations and comparisons, the effectiveness of the proposed hybrid FLC is validated. |
doi_str_mv | 10.1109/IECON.2011.6119674 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6119674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6119674</ieee_id><sourcerecordid>6119674</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bf6039131bb9e2e4a892cad6c95a4ef2470b3dcaefd1f387bcbcd124a519b6a53</originalsourceid><addsrcrecordid>eNotj8tKw0AYRkdUsK19Ad3MCyTOP9fMSkqoWih2o-CuzFUiY1ImySJ9egtmdTibw_ch9ACkBCD6abetD-8lJQClBNBS8Su0BAm04lqBukZrrarZpSY3aAFCsEIo-nWHln3_Q4jglYQFet60uDsNza9JOI7n84RT99047Lp2yF1KIePYZWxaPLY-ZOOG0QzBX6xxk0vhHt1Gk_qwnrlCny_bj_qt2B9ed_VmXzSgxFDYKAnTwMBaHWjgptLUGS-dFoaHSLkilnlnQvQQWaWss84D5UaAttIItkKP_90mhHA85cvgPB3n8-wPx0hNLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An optimal fuzzy logic controller for an underactuated unicycle</title><source>IEEE Xplore All Conference Series</source><creator>Jian-Xin Xu ; Zhao-Qin Guo ; Tong Heng Lee</creator><creatorcontrib>Jian-Xin Xu ; Zhao-Qin Guo ; Tong Heng Lee</creatorcontrib><description>In this paper, we propose a hybrid design method for fuzzy logic controller (FLC), where the control objective for unicycle is to achieve velocity control of the wheel while keep the pendulum at the balanced position that is an unstable equilibrium. The hybrid design consists of three phases. First, FLC structure including the number of rules, membership function, inference, and parametric relations, are chosen based on heuristic knowledge about the unicycle. Then, based on a linearized model and linear feedback, the output parameters of FLC are determined quantitatively for the stabilization of the unicycle. Next, fine tuning of FLC output parameters are carried out using an iterative learning tuning (ILT) algorithm, where ILT iteratively minimizes an objective function that specifies the desired unicycle performance. The rationale of introducing the hybrid FLC design is to fully utilize available information, which is achieved by combining model-based and model-free designs, hence improve FLC performance. Through intensive simulations and comparisons, the effectiveness of the proposed hybrid FLC is validated.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 9781612849690</identifier><identifier>ISBN: 1612849695</identifier><identifier>EISBN: 1612849717</identifier><identifier>EISBN: 9781612849713</identifier><identifier>EISBN: 9781612849720</identifier><identifier>EISBN: 1612849725</identifier><identifier>DOI: 10.1109/IECON.2011.6119674</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cost function ; Friction ; fuzzy logic controller ; Input variables ; iterative learning ; Mathematical model ; Torque ; Tuning ; underactuated ; unicycle ; Wheels</subject><ispartof>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.2335-2340</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6119674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6119674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jian-Xin Xu</creatorcontrib><creatorcontrib>Zhao-Qin Guo</creatorcontrib><creatorcontrib>Tong Heng Lee</creatorcontrib><title>An optimal fuzzy logic controller for an underactuated unicycle</title><title>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>In this paper, we propose a hybrid design method for fuzzy logic controller (FLC), where the control objective for unicycle is to achieve velocity control of the wheel while keep the pendulum at the balanced position that is an unstable equilibrium. The hybrid design consists of three phases. First, FLC structure including the number of rules, membership function, inference, and parametric relations, are chosen based on heuristic knowledge about the unicycle. Then, based on a linearized model and linear feedback, the output parameters of FLC are determined quantitatively for the stabilization of the unicycle. Next, fine tuning of FLC output parameters are carried out using an iterative learning tuning (ILT) algorithm, where ILT iteratively minimizes an objective function that specifies the desired unicycle performance. The rationale of introducing the hybrid FLC design is to fully utilize available information, which is achieved by combining model-based and model-free designs, hence improve FLC performance. Through intensive simulations and comparisons, the effectiveness of the proposed hybrid FLC is validated.</description><subject>Cost function</subject><subject>Friction</subject><subject>fuzzy logic controller</subject><subject>Input variables</subject><subject>iterative learning</subject><subject>Mathematical model</subject><subject>Torque</subject><subject>Tuning</subject><subject>underactuated</subject><subject>unicycle</subject><subject>Wheels</subject><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><isbn>1612849717</isbn><isbn>9781612849713</isbn><isbn>9781612849720</isbn><isbn>1612849725</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AYRkdUsK19Ad3MCyTOP9fMSkqoWih2o-CuzFUiY1ImySJ9egtmdTibw_ch9ACkBCD6abetD-8lJQClBNBS8Su0BAm04lqBukZrrarZpSY3aAFCsEIo-nWHln3_Q4jglYQFet60uDsNza9JOI7n84RT99047Lp2yF1KIePYZWxaPLY-ZOOG0QzBX6xxk0vhHt1Gk_qwnrlCny_bj_qt2B9ed_VmXzSgxFDYKAnTwMBaHWjgptLUGS-dFoaHSLkilnlnQvQQWaWss84D5UaAttIItkKP_90mhHA85cvgPB3n8-wPx0hNLw</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Jian-Xin Xu</creator><creator>Zhao-Qin Guo</creator><creator>Tong Heng Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>An optimal fuzzy logic controller for an underactuated unicycle</title><author>Jian-Xin Xu ; Zhao-Qin Guo ; Tong Heng Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bf6039131bb9e2e4a892cad6c95a4ef2470b3dcaefd1f387bcbcd124a519b6a53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cost function</topic><topic>Friction</topic><topic>fuzzy logic controller</topic><topic>Input variables</topic><topic>iterative learning</topic><topic>Mathematical model</topic><topic>Torque</topic><topic>Tuning</topic><topic>underactuated</topic><topic>unicycle</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Jian-Xin Xu</creatorcontrib><creatorcontrib>Zhao-Qin Guo</creatorcontrib><creatorcontrib>Tong Heng Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jian-Xin Xu</au><au>Zhao-Qin Guo</au><au>Tong Heng Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An optimal fuzzy logic controller for an underactuated unicycle</atitle><btitle>IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2011-11</date><risdate>2011</risdate><spage>2335</spage><epage>2340</epage><pages>2335-2340</pages><issn>1553-572X</issn><isbn>9781612849690</isbn><isbn>1612849695</isbn><eisbn>1612849717</eisbn><eisbn>9781612849713</eisbn><eisbn>9781612849720</eisbn><eisbn>1612849725</eisbn><abstract>In this paper, we propose a hybrid design method for fuzzy logic controller (FLC), where the control objective for unicycle is to achieve velocity control of the wheel while keep the pendulum at the balanced position that is an unstable equilibrium. The hybrid design consists of three phases. First, FLC structure including the number of rules, membership function, inference, and parametric relations, are chosen based on heuristic knowledge about the unicycle. Then, based on a linearized model and linear feedback, the output parameters of FLC are determined quantitatively for the stabilization of the unicycle. Next, fine tuning of FLC output parameters are carried out using an iterative learning tuning (ILT) algorithm, where ILT iteratively minimizes an objective function that specifies the desired unicycle performance. The rationale of introducing the hybrid FLC design is to fully utilize available information, which is achieved by combining model-based and model-free designs, hence improve FLC performance. Through intensive simulations and comparisons, the effectiveness of the proposed hybrid FLC is validated.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2011.6119674</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1553-572X |
ispartof | IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society, 2011, p.2335-2340 |
issn | 1553-572X |
language | eng |
recordid | cdi_ieee_primary_6119674 |
source | IEEE Xplore All Conference Series |
subjects | Cost function Friction fuzzy logic controller Input variables iterative learning Mathematical model Torque Tuning underactuated unicycle Wheels |
title | An optimal fuzzy logic controller for an underactuated unicycle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20optimal%20fuzzy%20logic%20controller%20for%20an%20underactuated%20unicycle&rft.btitle=IECON%202011%20-%2037th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Jian-Xin%20Xu&rft.date=2011-11&rft.spage=2335&rft.epage=2340&rft.pages=2335-2340&rft.issn=1553-572X&rft.isbn=9781612849690&rft.isbn_list=1612849695&rft_id=info:doi/10.1109/IECON.2011.6119674&rft.eisbn=1612849717&rft.eisbn_list=9781612849713&rft.eisbn_list=9781612849720&rft.eisbn_list=1612849725&rft_dat=%3Cieee_CHZPO%3E6119674%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bf6039131bb9e2e4a892cad6c95a4ef2470b3dcaefd1f387bcbcd124a519b6a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6119674&rfr_iscdi=true |