Loading…

A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments

Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vi...

Full description

Saved in:
Bibliographic Details
Main Authors: Thakulsukanant, K., Patanavijit, V.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 381
container_issue
container_start_page 374
container_title
container_volume
creator Thakulsukanant, K.
Patanavijit, V.
description Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.
doi_str_mv 10.1109/SITIS.2011.18
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6120675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6120675</ieee_id><sourcerecordid>6120675</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463</originalsourceid><addsrcrecordid>eNotj81KAzEURiMiqLVLV27yAq25k59JlqVUHSgqzizclWTmpkY6mZpMC317C_ptzuLAgY-Qe2BzAGYe66qp6nnBAOagL8jUlJqVykihuOSX5BaEKjkTHD6vyTTnb3aeUkYLuCHtgr5j8kPqbWyRLod-b1PIQ6SDp3WI2x3SqrdbpB_YDjGP6dCO4awbbL9i-DlgpofYYaI1HjHZHX0dQj7RVTyGNMQe45jvyJW3u4zTf05I87Rqli-z9dtztVysZ8GwcSascMYbVIjSsII5KDoJynbgHEjnBQqutEbmhLdSM2i1cwVHX7KWdeevE_Lwlw2IuNmn0Nt02igomCol_wXys1dQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thakulsukanant, K. ; Patanavijit, V.</creator><creatorcontrib>Thakulsukanant, K. ; Patanavijit, V.</creatorcontrib><description>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&amp;Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</description><identifier>ISBN: 146730431X</identifier><identifier>ISBN: 9781467304313</identifier><identifier>EISBN: 9780769546353</identifier><identifier>EISBN: 0769546358</identifier><identifier>DOI: 10.1109/SITIS.2011.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Degradation ; Digital Image Enhancement ; Digital Image Processing ; Digital Image Reconstruction ; Image reconstruction ; Image restoration ; PSNR ; Wiener filter</subject><ispartof>2011 Seventh International Conference on Signal Image Technology &amp; Internet-Based Systems, 2011, p.374-381</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6120675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,27907,54902</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6120675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thakulsukanant, K.</creatorcontrib><creatorcontrib>Patanavijit, V.</creatorcontrib><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><title>2011 Seventh International Conference on Signal Image Technology &amp; Internet-Based Systems</title><addtitle>sitis</addtitle><description>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&amp;Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</description><subject>Bayesian methods</subject><subject>Degradation</subject><subject>Digital Image Enhancement</subject><subject>Digital Image Processing</subject><subject>Digital Image Reconstruction</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>PSNR</subject><subject>Wiener filter</subject><isbn>146730431X</isbn><isbn>9781467304313</isbn><isbn>9780769546353</isbn><isbn>0769546358</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURiMiqLVLV27yAq25k59JlqVUHSgqzizclWTmpkY6mZpMC317C_ptzuLAgY-Qe2BzAGYe66qp6nnBAOagL8jUlJqVykihuOSX5BaEKjkTHD6vyTTnb3aeUkYLuCHtgr5j8kPqbWyRLod-b1PIQ6SDp3WI2x3SqrdbpB_YDjGP6dCO4awbbL9i-DlgpofYYaI1HjHZHX0dQj7RVTyGNMQe45jvyJW3u4zTf05I87Rqli-z9dtztVysZ8GwcSascMYbVIjSsII5KDoJynbgHEjnBQqutEbmhLdSM2i1cwVHX7KWdeevE_Lwlw2IuNmn0Nt02igomCol_wXys1dQ</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Thakulsukanant, K.</creator><creator>Patanavijit, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><author>Thakulsukanant, K. ; Patanavijit, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Degradation</topic><topic>Digital Image Enhancement</topic><topic>Digital Image Processing</topic><topic>Digital Image Reconstruction</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>PSNR</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakulsukanant, K.</creatorcontrib><creatorcontrib>Patanavijit, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thakulsukanant, K.</au><au>Patanavijit, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</atitle><btitle>2011 Seventh International Conference on Signal Image Technology &amp; Internet-Based Systems</btitle><stitle>sitis</stitle><date>2011-11</date><risdate>2011</risdate><spage>374</spage><epage>381</epage><pages>374-381</pages><isbn>146730431X</isbn><isbn>9781467304313</isbn><eisbn>9780769546353</eisbn><eisbn>0769546358</eisbn><abstract>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&amp;Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</abstract><pub>IEEE</pub><doi>10.1109/SITIS.2011.18</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 146730431X
ispartof 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems, 2011, p.374-381
issn
language eng
recordid cdi_ieee_primary_6120675
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Degradation
Digital Image Enhancement
Digital Image Processing
Digital Image Reconstruction
Image reconstruction
Image restoration
PSNR
Wiener filter
title A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Performance%20Comparison%20of%20Single%20Image%20Reconstruction%20Techniques%20under%20Several%20Noisy%20Environments&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Signal%20Image%20Technology%20&%20Internet-Based%20Systems&rft.au=Thakulsukanant,%20K.&rft.date=2011-11&rft.spage=374&rft.epage=381&rft.pages=374-381&rft.isbn=146730431X&rft.isbn_list=9781467304313&rft_id=info:doi/10.1109/SITIS.2011.18&rft.eisbn=9780769546353&rft.eisbn_list=0769546358&rft_dat=%3Cieee_6IE%3E6120675%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6120675&rfr_iscdi=true