Loading…
A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments
Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 381 |
container_issue | |
container_start_page | 374 |
container_title | |
container_volume | |
creator | Thakulsukanant, K. Patanavijit, V. |
description | Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results. |
doi_str_mv | 10.1109/SITIS.2011.18 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6120675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6120675</ieee_id><sourcerecordid>6120675</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463</originalsourceid><addsrcrecordid>eNotj81KAzEURiMiqLVLV27yAq25k59JlqVUHSgqzizclWTmpkY6mZpMC317C_ptzuLAgY-Qe2BzAGYe66qp6nnBAOagL8jUlJqVykihuOSX5BaEKjkTHD6vyTTnb3aeUkYLuCHtgr5j8kPqbWyRLod-b1PIQ6SDp3WI2x3SqrdbpB_YDjGP6dCO4awbbL9i-DlgpofYYaI1HjHZHX0dQj7RVTyGNMQe45jvyJW3u4zTf05I87Rqli-z9dtztVysZ8GwcSascMYbVIjSsII5KDoJynbgHEjnBQqutEbmhLdSM2i1cwVHX7KWdeevE_Lwlw2IuNmn0Nt02igomCol_wXys1dQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Thakulsukanant, K. ; Patanavijit, V.</creator><creatorcontrib>Thakulsukanant, K. ; Patanavijit, V.</creatorcontrib><description>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</description><identifier>ISBN: 146730431X</identifier><identifier>ISBN: 9781467304313</identifier><identifier>EISBN: 9780769546353</identifier><identifier>EISBN: 0769546358</identifier><identifier>DOI: 10.1109/SITIS.2011.18</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Degradation ; Digital Image Enhancement ; Digital Image Processing ; Digital Image Reconstruction ; Image reconstruction ; Image restoration ; PSNR ; Wiener filter</subject><ispartof>2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems, 2011, p.374-381</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6120675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,27907,54902</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6120675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Thakulsukanant, K.</creatorcontrib><creatorcontrib>Patanavijit, V.</creatorcontrib><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><title>2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems</title><addtitle>sitis</addtitle><description>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</description><subject>Bayesian methods</subject><subject>Degradation</subject><subject>Digital Image Enhancement</subject><subject>Digital Image Processing</subject><subject>Digital Image Reconstruction</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>PSNR</subject><subject>Wiener filter</subject><isbn>146730431X</isbn><isbn>9781467304313</isbn><isbn>9780769546353</isbn><isbn>0769546358</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURiMiqLVLV27yAq25k59JlqVUHSgqzizclWTmpkY6mZpMC317C_ptzuLAgY-Qe2BzAGYe66qp6nnBAOagL8jUlJqVykihuOSX5BaEKjkTHD6vyTTnb3aeUkYLuCHtgr5j8kPqbWyRLod-b1PIQ6SDp3WI2x3SqrdbpB_YDjGP6dCO4awbbL9i-DlgpofYYaI1HjHZHX0dQj7RVTyGNMQe45jvyJW3u4zTf05I87Rqli-z9dtztVysZ8GwcSascMYbVIjSsII5KDoJynbgHEjnBQqutEbmhLdSM2i1cwVHX7KWdeevE_Lwlw2IuNmn0Nt02igomCol_wXys1dQ</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Thakulsukanant, K.</creator><creator>Patanavijit, V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201111</creationdate><title>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</title><author>Thakulsukanant, K. ; Patanavijit, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bayesian methods</topic><topic>Degradation</topic><topic>Digital Image Enhancement</topic><topic>Digital Image Processing</topic><topic>Digital Image Reconstruction</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>PSNR</topic><topic>Wiener filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Thakulsukanant, K.</creatorcontrib><creatorcontrib>Patanavijit, V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thakulsukanant, K.</au><au>Patanavijit, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments</atitle><btitle>2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems</btitle><stitle>sitis</stitle><date>2011-11</date><risdate>2011</risdate><spage>374</spage><epage>381</epage><pages>374-381</pages><isbn>146730431X</isbn><isbn>9781467304313</isbn><eisbn>9780769546353</eisbn><eisbn>0769546358</eisbn><abstract>Due to noise contamination on the image during the observation process, digital image reconstruction is an essential in terms of recovering the information of the contents (e.g. document and image) and utilized in many applications such as digital image forensic, medical image processing, machine vision, and etc. Therefore, this paper is concerned with the performance comparisons of single image employing various reconstruction approaches. These are Inverse filter, Wiener filter, Regularized technique, Lucy-Richardson technique, and Bayesian technique based on median, mean, myriad, and meridian filters. The experiments test on the three standard pictures (Lena, Resolution chart, and Susie (40th)) under the same noise conditions. Four types of noise models consider in this paper are AWGN, Poisson, Salt&Pepper, and Speckle noises. The performance of evaluations is done by varying parameters of individual technique. Peak-signal-to-noise-ratio (PSNR) is a key indicator on the performance comparison results.</abstract><pub>IEEE</pub><doi>10.1109/SITIS.2011.18</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 146730431X |
ispartof | 2011 Seventh International Conference on Signal Image Technology & Internet-Based Systems, 2011, p.374-381 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6120675 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Degradation Digital Image Enhancement Digital Image Processing Digital Image Reconstruction Image reconstruction Image restoration PSNR Wiener filter |
title | A Performance Comparison of Single Image Reconstruction Techniques under Several Noisy Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Performance%20Comparison%20of%20Single%20Image%20Reconstruction%20Techniques%20under%20Several%20Noisy%20Environments&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Signal%20Image%20Technology%20&%20Internet-Based%20Systems&rft.au=Thakulsukanant,%20K.&rft.date=2011-11&rft.spage=374&rft.epage=381&rft.pages=374-381&rft.isbn=146730431X&rft.isbn_list=9781467304313&rft_id=info:doi/10.1109/SITIS.2011.18&rft.eisbn=9780769546353&rft.eisbn_list=0769546358&rft_dat=%3Cieee_6IE%3E6120675%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-4a4b9f9e6ee59020b12d516ad1bb15bf4e43688e0b4fa5801c8bb23ef70c0d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6120675&rfr_iscdi=true |