Loading…

Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic

This paper presents a high-performance and biophysically accurate neuroprocessor architecture based on floating point arithmetic and compartmental modeling. It aims to overcome the limitations of traditional hardware neuron models that simplify the required arithmetic using fixed-point models. This...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers 2013-03, Vol.62 (3), p.599-608
Main Authors: Yiwei Zhang, Mcgeehan, J. P., Regan, E. M., Kelly, S., Nunez-Yanez, J. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03
cites cdi_FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03
container_end_page 608
container_issue 3
container_start_page 599
container_title IEEE transactions on computers
container_volume 62
creator Yiwei Zhang
Mcgeehan, J. P.
Regan, E. M.
Kelly, S.
Nunez-Yanez, J. L.
description This paper presents a high-performance and biophysically accurate neuroprocessor architecture based on floating point arithmetic and compartmental modeling. It aims to overcome the limitations of traditional hardware neuron models that simplify the required arithmetic using fixed-point models. This can result in arbitrary loss of precision due to rounding errors and data truncation. On the other hand, a neuroprocessor based on a floating-point bio-inspired model, such as the one presented in this work, is able to capture additional cell properties and accurately mimic cellular behaviors required in many neuroscience experiments. The architecture is prototyped in reconfigurable logic obtaining a flexible and adaptable cell and network structure together with real time performance by using the available floating point hardware resources in parallel. The paper also demonstrates model scalability by combining the basic processor components that describe the soma, dendrite and synapse of organic cells to form more complex neuron structures.
doi_str_mv 10.1109/TC.2011.257
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6122016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6122016</ieee_id><sourcerecordid>2882752691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03</originalsourceid><addsrcrecordid>eNpd0M9LwzAYxvEgCs7pyaOXghdBOt-ka9IcZ3EqzB_IPIc0eTszumYm7WH_vR0TD57ey4eXhy8hlxQmlIK8W5YTBpROWC6OyIjmuUilzPkxGQHQIpXZFE7JWYxrAOAM5Ii83Du__dpFZ3TT7JKZMX3QHSZzrzvXrpJ379ouecU--G3wBmP0ISa1D8kHGt_WbjX4qsFk4VfOnJOTWjcRL37vmHzOH5blU7p4e3wuZ4vUMM5FWkw1GLAVgpV2KrjGyhaCWmZYbaEGi7SoLOfaGklhKhjXGgGNMMhkXUE2JjeHv8Om7x5jpzYuGmwa3aLvo6IZzQXITGYDvf5H174P7bBOUVZkUhSU5YO6PSgTfIwBa7UNbqPDTlFQ-7RqWap9WjWkHfTVQTtE_JOcskHw7AeFo3T4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283978125</pqid></control><display><type>article</type><title>Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic</title><source>IEEE Xplore (Online service)</source><creator>Yiwei Zhang ; Mcgeehan, J. P. ; Regan, E. M. ; Kelly, S. ; Nunez-Yanez, J. L.</creator><creatorcontrib>Yiwei Zhang ; Mcgeehan, J. P. ; Regan, E. M. ; Kelly, S. ; Nunez-Yanez, J. L.</creatorcontrib><description>This paper presents a high-performance and biophysically accurate neuroprocessor architecture based on floating point arithmetic and compartmental modeling. It aims to overcome the limitations of traditional hardware neuron models that simplify the required arithmetic using fixed-point models. This can result in arbitrary loss of precision due to rounding errors and data truncation. On the other hand, a neuroprocessor based on a floating-point bio-inspired model, such as the one presented in this work, is able to capture additional cell properties and accurately mimic cellular behaviors required in many neuroscience experiments. The architecture is prototyped in reconfigurable logic obtaining a flexible and adaptable cell and network structure together with real time performance by using the available floating point hardware resources in parallel. The paper also demonstrates model scalability by combining the basic processor components that describe the soma, dendrite and synapse of organic cells to form more complex neuron structures.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2011.257</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Architecture ; Computer Systems Organization ; Decision support systems ; Dendritic structure ; Floating point arithmetic ; Hardware ; Logic ; Mathematical models ; Microprocessors ; Neurocomputers ; Neurons ; Other Architecture Styles ; Processor Architecture ; Reconfigurable hardware ; Special-Purpose and Application-Based Systems ; Studies</subject><ispartof>IEEE transactions on computers, 2013-03, Vol.62 (3), p.599-608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03</citedby><cites>FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6122016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yiwei Zhang</creatorcontrib><creatorcontrib>Mcgeehan, J. P.</creatorcontrib><creatorcontrib>Regan, E. M.</creatorcontrib><creatorcontrib>Kelly, S.</creatorcontrib><creatorcontrib>Nunez-Yanez, J. L.</creatorcontrib><title>Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>This paper presents a high-performance and biophysically accurate neuroprocessor architecture based on floating point arithmetic and compartmental modeling. It aims to overcome the limitations of traditional hardware neuron models that simplify the required arithmetic using fixed-point models. This can result in arbitrary loss of precision due to rounding errors and data truncation. On the other hand, a neuroprocessor based on a floating-point bio-inspired model, such as the one presented in this work, is able to capture additional cell properties and accurately mimic cellular behaviors required in many neuroscience experiments. The architecture is prototyped in reconfigurable logic obtaining a flexible and adaptable cell and network structure together with real time performance by using the available floating point hardware resources in parallel. The paper also demonstrates model scalability by combining the basic processor components that describe the soma, dendrite and synapse of organic cells to form more complex neuron structures.</description><subject>Architecture</subject><subject>Computer Systems Organization</subject><subject>Decision support systems</subject><subject>Dendritic structure</subject><subject>Floating point arithmetic</subject><subject>Hardware</subject><subject>Logic</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Neurocomputers</subject><subject>Neurons</subject><subject>Other Architecture Styles</subject><subject>Processor Architecture</subject><subject>Reconfigurable hardware</subject><subject>Special-Purpose and Application-Based Systems</subject><subject>Studies</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0M9LwzAYxvEgCs7pyaOXghdBOt-ka9IcZ3EqzB_IPIc0eTszumYm7WH_vR0TD57ey4eXhy8hlxQmlIK8W5YTBpROWC6OyIjmuUilzPkxGQHQIpXZFE7JWYxrAOAM5Ii83Du__dpFZ3TT7JKZMX3QHSZzrzvXrpJ379ouecU--G3wBmP0ISa1D8kHGt_WbjX4qsFk4VfOnJOTWjcRL37vmHzOH5blU7p4e3wuZ4vUMM5FWkw1GLAVgpV2KrjGyhaCWmZYbaEGi7SoLOfaGklhKhjXGgGNMMhkXUE2JjeHv8Om7x5jpzYuGmwa3aLvo6IZzQXITGYDvf5H174P7bBOUVZkUhSU5YO6PSgTfIwBa7UNbqPDTlFQ-7RqWap9WjWkHfTVQTtE_JOcskHw7AeFo3T4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Yiwei Zhang</creator><creator>Mcgeehan, J. P.</creator><creator>Regan, E. M.</creator><creator>Kelly, S.</creator><creator>Nunez-Yanez, J. L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130301</creationdate><title>Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic</title><author>Yiwei Zhang ; Mcgeehan, J. P. ; Regan, E. M. ; Kelly, S. ; Nunez-Yanez, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Architecture</topic><topic>Computer Systems Organization</topic><topic>Decision support systems</topic><topic>Dendritic structure</topic><topic>Floating point arithmetic</topic><topic>Hardware</topic><topic>Logic</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Neurocomputers</topic><topic>Neurons</topic><topic>Other Architecture Styles</topic><topic>Processor Architecture</topic><topic>Reconfigurable hardware</topic><topic>Special-Purpose and Application-Based Systems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiwei Zhang</creatorcontrib><creatorcontrib>Mcgeehan, J. P.</creatorcontrib><creatorcontrib>Regan, E. M.</creatorcontrib><creatorcontrib>Kelly, S.</creatorcontrib><creatorcontrib>Nunez-Yanez, J. L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiwei Zhang</au><au>Mcgeehan, J. P.</au><au>Regan, E. M.</au><au>Kelly, S.</au><au>Nunez-Yanez, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>62</volume><issue>3</issue><spage>599</spage><epage>608</epage><pages>599-608</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>This paper presents a high-performance and biophysically accurate neuroprocessor architecture based on floating point arithmetic and compartmental modeling. It aims to overcome the limitations of traditional hardware neuron models that simplify the required arithmetic using fixed-point models. This can result in arbitrary loss of precision due to rounding errors and data truncation. On the other hand, a neuroprocessor based on a floating-point bio-inspired model, such as the one presented in this work, is able to capture additional cell properties and accurately mimic cellular behaviors required in many neuroscience experiments. The architecture is prototyped in reconfigurable logic obtaining a flexible and adaptable cell and network structure together with real time performance by using the available floating point hardware resources in parallel. The paper also demonstrates model scalability by combining the basic processor components that describe the soma, dendrite and synapse of organic cells to form more complex neuron structures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2011.257</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9340
ispartof IEEE transactions on computers, 2013-03, Vol.62 (3), p.599-608
issn 0018-9340
1557-9956
language eng
recordid cdi_ieee_primary_6122016
source IEEE Xplore (Online service)
subjects Architecture
Computer Systems Organization
Decision support systems
Dendritic structure
Floating point arithmetic
Hardware
Logic
Mathematical models
Microprocessors
Neurocomputers
Neurons
Other Architecture Styles
Processor Architecture
Reconfigurable hardware
Special-Purpose and Application-Based Systems
Studies
title Biophysically Accurate Foating Point Neuroprocessors for Reconfigurable Logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A27%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysically%20Accurate%20Foating%20Point%20Neuroprocessors%20for%20Reconfigurable%20Logic&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Yiwei%20Zhang&rft.date=2013-03-01&rft.volume=62&rft.issue=3&rft.spage=599&rft.epage=608&rft.pages=599-608&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2011.257&rft_dat=%3Cproquest_ieee_%3E2882752691%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2667-84a0c0dbe0d9d476aebd871d2c2fd0f0de18bd66adc9104726aae0ec7ce29fb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283978125&rft_id=info:pmid/&rft_ieee_id=6122016&rfr_iscdi=true