Loading…

Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers

In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of m...

Full description

Saved in:
Bibliographic Details
Main Authors: Hegedus, J., Miche, Y., Ilin, A., Lendasse, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1023
container_issue
container_start_page 1016
container_title
container_volume
creator Hegedus, J.
Miche, Y.
Ilin, A.
Lendasse, A.
description In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of magnitude. In the second stage, a modified K-Nearest Neighbors classifier is used with Virus Total labeling of the file samples. This methodology is applied to a large number of file samples provided by F-Secure Corporation, for which a dynamic feature has been extracted during Deep Guard sandbox execution. As a result, the files classified as false negatives are used to detect possible malware that were not detected in the first place by Virus Total. The reduced number of selected false negatives allows the manual inspection by a human expert.
doi_str_mv 10.1109/CIS.2011.227
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6128278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6128278</ieee_id><sourcerecordid>6128278</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1287-cd6de572e8a7db5d094f331e3b3e996110f2aa5b08714636a61316cf6f05b4423</originalsourceid><addsrcrecordid>eNotUM1KAzEYjIig1t68eckLbM1_sse6Wi22VdSCt5JtvrQp240ki1Lw4V2ocxkYZgZmELqmZEQpKW-r6fuIEUpHjOkTdEm0KqWQRnyeomGpDRVSa0aIUedomPOO9FDKlKW6QL9z6LbRxSZuDtjHhO9ga79DTLYpapvB4bltfmwCPG5tc8ghY9s6fA8drLsQW7zMod3gt16Me_ya4u6oH23PxQL6bO7wAsJmW8eUcdXYnIMPkPIVOvO2yTD85wFaTh4-qqdi9vI4rcazIlBmdLF2yoHUDIzVrpaOlMJzToHXHPoR_QWeWStrYjQViiurKKdq7ZUnshaC8QG6OfYGAFh9pbC36bBSfTnThv8Bn6RfAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hegedus, J. ; Miche, Y. ; Ilin, A. ; Lendasse, A.</creator><creatorcontrib>Hegedus, J. ; Miche, Y. ; Ilin, A. ; Lendasse, A.</creatorcontrib><description>In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of magnitude. In the second stage, a modified K-Nearest Neighbors classifier is used with Virus Total labeling of the file samples. This methodology is applied to a large number of file samples provided by F-Secure Corporation, for which a dynamic feature has been extracted during Deep Guard sandbox execution. As a result, the files classified as false negatives are used to detect possible malware that were not detected in the first place by Virus Total. The reduced number of selected false negatives allows the manual inspection by a human expert.</description><identifier>ISBN: 9781457720086</identifier><identifier>ISBN: 1457720086</identifier><identifier>EISBN: 076954584X</identifier><identifier>EISBN: 9780769545844</identifier><identifier>DOI: 10.1109/CIS.2011.227</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bismuth ; Engines ; Feature extraction ; k nearest neighbors ; Labeling ; machine learning ; Malware ; malware detection ; random projections ; Vectors</subject><ispartof>2011 Seventh International Conference on Computational Intelligence and Security, 2011, p.1016-1023</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6128278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6128278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hegedus, J.</creatorcontrib><creatorcontrib>Miche, Y.</creatorcontrib><creatorcontrib>Ilin, A.</creatorcontrib><creatorcontrib>Lendasse, A.</creatorcontrib><title>Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers</title><title>2011 Seventh International Conference on Computational Intelligence and Security</title><addtitle>cis</addtitle><description>In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of magnitude. In the second stage, a modified K-Nearest Neighbors classifier is used with Virus Total labeling of the file samples. This methodology is applied to a large number of file samples provided by F-Secure Corporation, for which a dynamic feature has been extracted during Deep Guard sandbox execution. As a result, the files classified as false negatives are used to detect possible malware that were not detected in the first place by Virus Total. The reduced number of selected false negatives allows the manual inspection by a human expert.</description><subject>Accuracy</subject><subject>Bismuth</subject><subject>Engines</subject><subject>Feature extraction</subject><subject>k nearest neighbors</subject><subject>Labeling</subject><subject>machine learning</subject><subject>Malware</subject><subject>malware detection</subject><subject>random projections</subject><subject>Vectors</subject><isbn>9781457720086</isbn><isbn>1457720086</isbn><isbn>076954584X</isbn><isbn>9780769545844</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUM1KAzEYjIig1t68eckLbM1_sse6Wi22VdSCt5JtvrQp240ki1Lw4V2ocxkYZgZmELqmZEQpKW-r6fuIEUpHjOkTdEm0KqWQRnyeomGpDRVSa0aIUedomPOO9FDKlKW6QL9z6LbRxSZuDtjHhO9ga79DTLYpapvB4bltfmwCPG5tc8ghY9s6fA8drLsQW7zMod3gt16Me_ya4u6oH23PxQL6bO7wAsJmW8eUcdXYnIMPkPIVOvO2yTD85wFaTh4-qqdi9vI4rcazIlBmdLF2yoHUDIzVrpaOlMJzToHXHPoR_QWeWStrYjQViiurKKdq7ZUnshaC8QG6OfYGAFh9pbC36bBSfTnThv8Bn6RfAQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hegedus, J.</creator><creator>Miche, Y.</creator><creator>Ilin, A.</creator><creator>Lendasse, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers</title><author>Hegedus, J. ; Miche, Y. ; Ilin, A. ; Lendasse, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1287-cd6de572e8a7db5d094f331e3b3e996110f2aa5b08714636a61316cf6f05b4423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Bismuth</topic><topic>Engines</topic><topic>Feature extraction</topic><topic>k nearest neighbors</topic><topic>Labeling</topic><topic>machine learning</topic><topic>Malware</topic><topic>malware detection</topic><topic>random projections</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Hegedus, J.</creatorcontrib><creatorcontrib>Miche, Y.</creatorcontrib><creatorcontrib>Ilin, A.</creatorcontrib><creatorcontrib>Lendasse, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hegedus, J.</au><au>Miche, Y.</au><au>Ilin, A.</au><au>Lendasse, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers</atitle><btitle>2011 Seventh International Conference on Computational Intelligence and Security</btitle><stitle>cis</stitle><date>2011-12</date><risdate>2011</risdate><spage>1016</spage><epage>1023</epage><pages>1016-1023</pages><isbn>9781457720086</isbn><isbn>1457720086</isbn><eisbn>076954584X</eisbn><eisbn>9780769545844</eisbn><abstract>In this paper, a two-stage methodology to analyze and detect behavioral-based malware is presented. In the first stage, a random projection is decreasing the variable dimensionality of the problem and is simultaneously reducing the computational time of the classification task by several orders of magnitude. In the second stage, a modified K-Nearest Neighbors classifier is used with Virus Total labeling of the file samples. This methodology is applied to a large number of file samples provided by F-Secure Corporation, for which a dynamic feature has been extracted during Deep Guard sandbox execution. As a result, the files classified as false negatives are used to detect possible malware that were not detected in the first place by Virus Total. The reduced number of selected false negatives allows the manual inspection by a human expert.</abstract><pub>IEEE</pub><doi>10.1109/CIS.2011.227</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457720086
ispartof 2011 Seventh International Conference on Computational Intelligence and Security, 2011, p.1016-1023
issn
language eng
recordid cdi_ieee_primary_6128278
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Bismuth
Engines
Feature extraction
k nearest neighbors
Labeling
machine learning
Malware
malware detection
random projections
Vectors
title Methodology for Behavioral-based Malware Analysis and Detection Using Random Projections and K-Nearest Neighbors Classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Methodology%20for%20Behavioral-based%20Malware%20Analysis%20and%20Detection%20Using%20Random%20Projections%20and%20K-Nearest%20Neighbors%20Classifiers&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Computational%20Intelligence%20and%20Security&rft.au=Hegedus,%20J.&rft.date=2011-12&rft.spage=1016&rft.epage=1023&rft.pages=1016-1023&rft.isbn=9781457720086&rft.isbn_list=1457720086&rft_id=info:doi/10.1109/CIS.2011.227&rft.eisbn=076954584X&rft.eisbn_list=9780769545844&rft_dat=%3Cieee_6IE%3E6128278%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1287-cd6de572e8a7db5d094f331e3b3e996110f2aa5b08714636a61316cf6f05b4423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6128278&rfr_iscdi=true