Loading…

Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier

We address the problem of automated fingerprints-based person identification from poor-quality fingerprints. Our solution includes the definition of a region of interest centered over the fingerprint at a reference point. From this region of interest a feature vector is computed that is invariant to...

Full description

Saved in:
Bibliographic Details
Main Authors: Condurache, A. P., Mertins, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 493
container_issue
container_start_page 487
container_title
container_volume
creator Condurache, A. P.
Mertins, A.
description We address the problem of automated fingerprints-based person identification from poor-quality fingerprints. Our solution includes the definition of a region of interest centered over the fingerprint at a reference point. From this region of interest a feature vector is computed that is invariant to some geometrical transforms but also to point transforms of the gray levels in the region of interest. This feature vector is then classified by means of a sparse classifier. We successfully test our algorithms on a publicly available fingerprints database and show that they are robust to a set of issues afflicting current fingerprint-identification systems in the case of poor-quality fingerprints.
doi_str_mv 10.1109/DICTA.2011.88
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6128708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6128708</ieee_id><sourcerecordid>6128708</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e899e0b17f092eca1f82f3515b282b36414edd6d914c4a1e63212e8bf71f9b973</originalsourceid><addsrcrecordid>eNotjk1LxDAYhCMiqGuPnrzkD3TNm6b5OK7V1cLCLmsFb0vSvpHI2i5JPfjvDehcBuZhhiHkFtgSgJn7x7bpVkvOAJZan5HCKM2UNLWotebn5BpErRRnTL5fkiKlT5YlpcnVK7LbT-47zbSZIpa7KYxzud-29MEmHOg6jB8YTzGntB1wnIMPvZ3DNNK3lBm19PVkY0LaHG1KmWK8IRfeHhMW_74g3fqpa17Kzfa5bVabMhg2l6iNQeZAeWY49ha85r6qoXZcc1dJAQKHQQ4GRC8soKw4cNTOK_DGGVUtyN3fbEDEQ774ZePPQQLXiunqF-SfTqg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Condurache, A. P. ; Mertins, A.</creator><creatorcontrib>Condurache, A. P. ; Mertins, A.</creatorcontrib><description>We address the problem of automated fingerprints-based person identification from poor-quality fingerprints. Our solution includes the definition of a region of interest centered over the fingerprint at a reference point. From this region of interest a feature vector is computed that is invariant to some geometrical transforms but also to point transforms of the gray levels in the region of interest. This feature vector is then classified by means of a sparse classifier. We successfully test our algorithms on a publicly available fingerprints database and show that they are robust to a set of issues afflicting current fingerprint-identification systems in the case of poor-quality fingerprints.</description><identifier>ISBN: 145772006X</identifier><identifier>ISBN: 9781457720062</identifier><identifier>EISBN: 9780769545882</identifier><identifier>EISBN: 0769545882</identifier><identifier>DOI: 10.1109/DICTA.2011.88</identifier><language>eng</language><publisher>IEEE</publisher><subject>Discrete cosine transforms ; Feature extraction ; Humans ; Robustness ; Training ; Vectors</subject><ispartof>2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.487-493</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6128708$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6128708$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Condurache, A. P.</creatorcontrib><creatorcontrib>Mertins, A.</creatorcontrib><title>Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier</title><title>2011 International Conference on Digital Image Computing: Techniques and Applications</title><addtitle>dicta</addtitle><description>We address the problem of automated fingerprints-based person identification from poor-quality fingerprints. Our solution includes the definition of a region of interest centered over the fingerprint at a reference point. From this region of interest a feature vector is computed that is invariant to some geometrical transforms but also to point transforms of the gray levels in the region of interest. This feature vector is then classified by means of a sparse classifier. We successfully test our algorithms on a publicly available fingerprints database and show that they are robust to a set of issues afflicting current fingerprint-identification systems in the case of poor-quality fingerprints.</description><subject>Discrete cosine transforms</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Robustness</subject><subject>Training</subject><subject>Vectors</subject><isbn>145772006X</isbn><isbn>9781457720062</isbn><isbn>9780769545882</isbn><isbn>0769545882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjk1LxDAYhCMiqGuPnrzkD3TNm6b5OK7V1cLCLmsFb0vSvpHI2i5JPfjvDehcBuZhhiHkFtgSgJn7x7bpVkvOAJZan5HCKM2UNLWotebn5BpErRRnTL5fkiKlT5YlpcnVK7LbT-47zbSZIpa7KYxzud-29MEmHOg6jB8YTzGntB1wnIMPvZ3DNNK3lBm19PVkY0LaHG1KmWK8IRfeHhMW_74g3fqpa17Kzfa5bVabMhg2l6iNQeZAeWY49ha85r6qoXZcc1dJAQKHQQ4GRC8soKw4cNTOK_DGGVUtyN3fbEDEQ774ZePPQQLXiunqF-SfTqg</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Condurache, A. P.</creator><creator>Mertins, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier</title><author>Condurache, A. P. ; Mertins, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e899e0b17f092eca1f82f3515b282b36414edd6d914c4a1e63212e8bf71f9b973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Discrete cosine transforms</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Robustness</topic><topic>Training</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Condurache, A. P.</creatorcontrib><creatorcontrib>Mertins, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Condurache, A. P.</au><au>Mertins, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier</atitle><btitle>2011 International Conference on Digital Image Computing: Techniques and Applications</btitle><stitle>dicta</stitle><date>2011-12</date><risdate>2011</risdate><spage>487</spage><epage>493</epage><pages>487-493</pages><isbn>145772006X</isbn><isbn>9781457720062</isbn><eisbn>9780769545882</eisbn><eisbn>0769545882</eisbn><abstract>We address the problem of automated fingerprints-based person identification from poor-quality fingerprints. Our solution includes the definition of a region of interest centered over the fingerprint at a reference point. From this region of interest a feature vector is computed that is invariant to some geometrical transforms but also to point transforms of the gray levels in the region of interest. This feature vector is then classified by means of a sparse classifier. We successfully test our algorithms on a publicly available fingerprints database and show that they are robust to a set of issues afflicting current fingerprint-identification systems in the case of poor-quality fingerprints.</abstract><pub>IEEE</pub><doi>10.1109/DICTA.2011.88</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 145772006X
ispartof 2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.487-493
issn
language eng
recordid cdi_ieee_primary_6128708
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Discrete cosine transforms
Feature extraction
Humans
Robustness
Training
Vectors
title Robust Core-Point-ROI Based Fingerprint Identification Using a Sparse Classifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20Core-Point-ROI%20Based%20Fingerprint%20Identification%20Using%20a%20Sparse%20Classifier&rft.btitle=2011%20International%20Conference%20on%20Digital%20Image%20Computing:%20Techniques%20and%20Applications&rft.au=Condurache,%20A.%20P.&rft.date=2011-12&rft.spage=487&rft.epage=493&rft.pages=487-493&rft.isbn=145772006X&rft.isbn_list=9781457720062&rft_id=info:doi/10.1109/DICTA.2011.88&rft.eisbn=9780769545882&rft.eisbn_list=0769545882&rft_dat=%3Cieee_6IE%3E6128708%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e899e0b17f092eca1f82f3515b282b36414edd6d914c4a1e63212e8bf71f9b973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6128708&rfr_iscdi=true