Loading…
Face Recognition across Pose on Video Using Eigen Light-Fields
We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fie...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 541 |
container_issue | |
container_start_page | 536 |
container_title | |
container_volume | |
creator | Wibowo, M. E. Tjondronegoro, D. |
description | We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video. |
doi_str_mv | 10.1109/DICTA.2011.96 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6128716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6128716</ieee_id><sourcerecordid>6128716</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e8acff3e2c1ec29e8be291a422e8a51d907f1f00b0b0eb6c425c9e07d5ab77383</originalsourceid><addsrcrecordid>eNotjE9LxDAUxCMiqGuPnrzkC7S-lzb_LsJSt7pQUKSKtyVNX2tkbaXpxW9vQWcOw49hhrFrhAwR7O39vmy2mQDEzKoTllhtQCsrC2mMOGWXWEitBYB6P2dJjJ-wSim7Ti_YXeU88Rfy0zCGJUwjd36eYuTPUyS-4lvoaOKvMYwD34WBRl6H4WNJq0DHLl6xs94dIyX_uWFNtWvKx7R-etiX2zoNFpaUjPN9n5PwSF5YMi0Ji64QYm0kdhZ0jz1Au5pa5QshvSXQnXSt1rnJN-zm7zYQ0eF7Dl9u_jkoFEajyn8BwzxIfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Face Recognition across Pose on Video Using Eigen Light-Fields</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wibowo, M. E. ; Tjondronegoro, D.</creator><creatorcontrib>Wibowo, M. E. ; Tjondronegoro, D.</creatorcontrib><description>We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.</description><identifier>ISBN: 145772006X</identifier><identifier>ISBN: 9781457720062</identifier><identifier>EISBN: 9780769545882</identifier><identifier>EISBN: 0769545882</identifier><identifier>DOI: 10.1109/DICTA.2011.96</identifier><language>eng</language><publisher>IEEE</publisher><subject>Active appearance model ; Face ; Face recognition ; Hidden Markov models ; light-fields ; Manifolds ; pose ; Probes ; Shape ; video</subject><ispartof>2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.536-541</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6128716$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6128716$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wibowo, M. E.</creatorcontrib><creatorcontrib>Tjondronegoro, D.</creatorcontrib><title>Face Recognition across Pose on Video Using Eigen Light-Fields</title><title>2011 International Conference on Digital Image Computing: Techniques and Applications</title><addtitle>dicta</addtitle><description>We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.</description><subject>Active appearance model</subject><subject>Face</subject><subject>Face recognition</subject><subject>Hidden Markov models</subject><subject>light-fields</subject><subject>Manifolds</subject><subject>pose</subject><subject>Probes</subject><subject>Shape</subject><subject>video</subject><isbn>145772006X</isbn><isbn>9781457720062</isbn><isbn>9780769545882</isbn><isbn>0769545882</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjE9LxDAUxCMiqGuPnrzkC7S-lzb_LsJSt7pQUKSKtyVNX2tkbaXpxW9vQWcOw49hhrFrhAwR7O39vmy2mQDEzKoTllhtQCsrC2mMOGWXWEitBYB6P2dJjJ-wSim7Ti_YXeU88Rfy0zCGJUwjd36eYuTPUyS-4lvoaOKvMYwD34WBRl6H4WNJq0DHLl6xs94dIyX_uWFNtWvKx7R-etiX2zoNFpaUjPN9n5PwSF5YMi0Ji64QYm0kdhZ0jz1Au5pa5QshvSXQnXSt1rnJN-zm7zYQ0eF7Dl9u_jkoFEajyn8BwzxIfQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Wibowo, M. E.</creator><creator>Tjondronegoro, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Face Recognition across Pose on Video Using Eigen Light-Fields</title><author>Wibowo, M. E. ; Tjondronegoro, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e8acff3e2c1ec29e8be291a422e8a51d907f1f00b0b0eb6c425c9e07d5ab77383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Active appearance model</topic><topic>Face</topic><topic>Face recognition</topic><topic>Hidden Markov models</topic><topic>light-fields</topic><topic>Manifolds</topic><topic>pose</topic><topic>Probes</topic><topic>Shape</topic><topic>video</topic><toplevel>online_resources</toplevel><creatorcontrib>Wibowo, M. E.</creatorcontrib><creatorcontrib>Tjondronegoro, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wibowo, M. E.</au><au>Tjondronegoro, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Face Recognition across Pose on Video Using Eigen Light-Fields</atitle><btitle>2011 International Conference on Digital Image Computing: Techniques and Applications</btitle><stitle>dicta</stitle><date>2011-12</date><risdate>2011</risdate><spage>536</spage><epage>541</epage><pages>536-541</pages><isbn>145772006X</isbn><isbn>9781457720062</isbn><eisbn>9780769545882</eisbn><eisbn>0769545882</eisbn><abstract>We propose an approach to employ eigen light-fields for face recognition across pose on video. Faces of a subject are collected from video frames and combined based on the pose to obtain a set of probe light-fields. These probe data are then projected to the principal subspace of the eigen light-fields within which the classification takes place. We modify the original light-field projection and found that it is more robust in the proposed system. Evaluation on VidTIMIT dataset has demonstrated that the eigen light-fields method is able to take advantage of multiple observations contained in the video.</abstract><pub>IEEE</pub><doi>10.1109/DICTA.2011.96</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 145772006X |
ispartof | 2011 International Conference on Digital Image Computing: Techniques and Applications, 2011, p.536-541 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6128716 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active appearance model Face Face recognition Hidden Markov models light-fields Manifolds pose Probes Shape video |
title | Face Recognition across Pose on Video Using Eigen Light-Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Face%20Recognition%20across%20Pose%20on%20Video%20Using%20Eigen%20Light-Fields&rft.btitle=2011%20International%20Conference%20on%20Digital%20Image%20Computing:%20Techniques%20and%20Applications&rft.au=Wibowo,%20M.%20E.&rft.date=2011-12&rft.spage=536&rft.epage=541&rft.pages=536-541&rft.isbn=145772006X&rft.isbn_list=9781457720062&rft_id=info:doi/10.1109/DICTA.2011.96&rft.eisbn=9780769545882&rft.eisbn_list=0769545882&rft_dat=%3Cieee_6IE%3E6128716%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-e8acff3e2c1ec29e8be291a422e8a51d907f1f00b0b0eb6c425c9e07d5ab77383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6128716&rfr_iscdi=true |