Loading…

Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method

In this paper, thermo mechanical simulation of turning process has been developed using commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modeled using an Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assu...

Full description

Saved in:
Bibliographic Details
Main Authors: Hairudin, W. M. B., Awang, M. B.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Hairudin, W. M. B.
Awang, M. B.
description In this paper, thermo mechanical simulation of turning process has been developed using commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modeled using an Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behavior during the process. Adaptive meshing dynamic explicit is also employed in this model to avoid the severe deformation. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with three different rake angles; α=+10°, 0° and -10° and tool edge radius, p = 0.1mm, 0.5mm and 0.7mm. The results showed that the maximum stress for +10°, 0° and -10° are 1060MPa, 1040MPa and 1070MPa while the maximum temperature results shown that 835 °C, 893°C and 914°C. The maximum stress and temperature of tool edge radius also have been captured.
doi_str_mv 10.1109/NatPC.2011.6136405
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6136405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6136405</ieee_id><sourcerecordid>6136405</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d163be9dd8af2835b135c2ae6d1bc0e0c9331bed3e0a80c79d562f2d1cc618d43</originalsourceid><addsrcrecordid>eNo1kL9OwzAYxI0QElDyArD4BRL82YnjjFVUKFIEDNkYKsf-khjlT2WnA29PKsotd7_ldDpCHoElAKx4ftfLZ5lwBpBIEDJl2RWJilxBmuU5KCXYNbn_B85uSRTCN1slZZZyeUe-6h79ONMRTa8nZ_RAx9ni4KaOzi1dTn46x6OfDYZAT-FMeqJb37jFa_9DK915PXVOT_HuNKBfw9q29LN9IDetHgJGF9-Q-mVXl_u4-nh9K7dV7Aq2xBakaLCwVumWK5E1IDLDNUoLjWHITCEENGgFMq2YyQubSd5yC8ZIUDYVG_L0V-sQ8XD0blxnHS53iF9WVFW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hairudin, W. M. B. ; Awang, M. B.</creator><creatorcontrib>Hairudin, W. M. B. ; Awang, M. B.</creatorcontrib><description>In this paper, thermo mechanical simulation of turning process has been developed using commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modeled using an Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behavior during the process. Adaptive meshing dynamic explicit is also employed in this model to avoid the severe deformation. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with three different rake angles; α=+10°, 0° and -10° and tool edge radius, p = 0.1mm, 0.5mm and 0.7mm. The results showed that the maximum stress for +10°, 0° and -10° are 1060MPa, 1040MPa and 1070MPa while the maximum temperature results shown that 835 °C, 893°C and 914°C. The maximum stress and temperature of tool edge radius also have been captured.</description><identifier>ISBN: 1457718820</identifier><identifier>ISBN: 9781457718823</identifier><identifier>EISBN: 9781457718830</identifier><identifier>EISBN: 9781457718847</identifier><identifier>EISBN: 1457718847</identifier><identifier>EISBN: 1457718839</identifier><identifier>DOI: 10.1109/NatPC.2011.6136405</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arbitrary Lagrangian-Eulerian (ALE) ; Finite element methods ; Finite Element Model ; Johnson Cook (JC ; Machining ; Materials ; Orthogonal Cutting ; Predictive models ; Strain ; Stress ; Temperature distribution ; Thermo mechanical</subject><ispartof>2011 National Postgraduate Conference, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6136405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27916,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6136405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hairudin, W. M. B.</creatorcontrib><creatorcontrib>Awang, M. B.</creatorcontrib><title>Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method</title><title>2011 National Postgraduate Conference</title><addtitle>NatPC</addtitle><description>In this paper, thermo mechanical simulation of turning process has been developed using commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modeled using an Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behavior during the process. Adaptive meshing dynamic explicit is also employed in this model to avoid the severe deformation. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with three different rake angles; α=+10°, 0° and -10° and tool edge radius, p = 0.1mm, 0.5mm and 0.7mm. The results showed that the maximum stress for +10°, 0° and -10° are 1060MPa, 1040MPa and 1070MPa while the maximum temperature results shown that 835 °C, 893°C and 914°C. The maximum stress and temperature of tool edge radius also have been captured.</description><subject>Arbitrary Lagrangian-Eulerian (ALE)</subject><subject>Finite element methods</subject><subject>Finite Element Model</subject><subject>Johnson Cook (JC</subject><subject>Machining</subject><subject>Materials</subject><subject>Orthogonal Cutting</subject><subject>Predictive models</subject><subject>Strain</subject><subject>Stress</subject><subject>Temperature distribution</subject><subject>Thermo mechanical</subject><isbn>1457718820</isbn><isbn>9781457718823</isbn><isbn>9781457718830</isbn><isbn>9781457718847</isbn><isbn>1457718847</isbn><isbn>1457718839</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kL9OwzAYxI0QElDyArD4BRL82YnjjFVUKFIEDNkYKsf-khjlT2WnA29PKsotd7_ldDpCHoElAKx4ftfLZ5lwBpBIEDJl2RWJilxBmuU5KCXYNbn_B85uSRTCN1slZZZyeUe-6h79ONMRTa8nZ_RAx9ni4KaOzi1dTn46x6OfDYZAT-FMeqJb37jFa_9DK915PXVOT_HuNKBfw9q29LN9IDetHgJGF9-Q-mVXl_u4-nh9K7dV7Aq2xBakaLCwVumWK5E1IDLDNUoLjWHITCEENGgFMq2YyQubSd5yC8ZIUDYVG_L0V-sQ8XD0blxnHS53iF9WVFW8</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Hairudin, W. M. B.</creator><creator>Awang, M. B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method</title><author>Hairudin, W. M. B. ; Awang, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d163be9dd8af2835b135c2ae6d1bc0e0c9331bed3e0a80c79d562f2d1cc618d43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arbitrary Lagrangian-Eulerian (ALE)</topic><topic>Finite element methods</topic><topic>Finite Element Model</topic><topic>Johnson Cook (JC</topic><topic>Machining</topic><topic>Materials</topic><topic>Orthogonal Cutting</topic><topic>Predictive models</topic><topic>Strain</topic><topic>Stress</topic><topic>Temperature distribution</topic><topic>Thermo mechanical</topic><toplevel>online_resources</toplevel><creatorcontrib>Hairudin, W. M. B.</creatorcontrib><creatorcontrib>Awang, M. B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hairudin, W. M. B.</au><au>Awang, M. B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method</atitle><btitle>2011 National Postgraduate Conference</btitle><stitle>NatPC</stitle><date>2011-09</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1457718820</isbn><isbn>9781457718823</isbn><eisbn>9781457718830</eisbn><eisbn>9781457718847</eisbn><eisbn>1457718847</eisbn><eisbn>1457718839</eisbn><abstract>In this paper, thermo mechanical simulation of turning process has been developed using commercially available finite element analysis software, ABAQUS. A 2-D orthogonal cutting has been modeled using an Arbitrary Lagrangian-Eulerian (ALE) formulation. The Johnson-Cook plasticity model has been assumed to describe the material behavior during the process. Adaptive meshing dynamic explicit is also employed in this model to avoid the severe deformation. This study is aimed at temperature and stresses distributions during machining of AISI 1045 steel with three different rake angles; α=+10°, 0° and -10° and tool edge radius, p = 0.1mm, 0.5mm and 0.7mm. The results showed that the maximum stress for +10°, 0° and -10° are 1060MPa, 1040MPa and 1070MPa while the maximum temperature results shown that 835 °C, 893°C and 914°C. The maximum stress and temperature of tool edge radius also have been captured.</abstract><pub>IEEE</pub><doi>10.1109/NatPC.2011.6136405</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457718820
ispartof 2011 National Postgraduate Conference, 2011, p.1-6
issn
language eng
recordid cdi_ieee_primary_6136405
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arbitrary Lagrangian-Eulerian (ALE)
Finite element methods
Finite Element Model
Johnson Cook (JC
Machining
Materials
Orthogonal Cutting
Predictive models
Strain
Stress
Temperature distribution
Thermo mechanical
title Thermo mechanical modeling of turning process using an Arbitrary Lagrangian-Eulerian method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Thermo%20mechanical%20modeling%20of%20turning%20process%20using%20an%20Arbitrary%20Lagrangian-Eulerian%20method&rft.btitle=2011%20National%20Postgraduate%20Conference&rft.au=Hairudin,%20W.%20M.%20B.&rft.date=2011-09&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1457718820&rft.isbn_list=9781457718823&rft_id=info:doi/10.1109/NatPC.2011.6136405&rft.eisbn=9781457718830&rft.eisbn_list=9781457718847&rft.eisbn_list=1457718847&rft.eisbn_list=1457718839&rft_dat=%3Cieee_6IE%3E6136405%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-d163be9dd8af2835b135c2ae6d1bc0e0c9331bed3e0a80c79d562f2d1cc618d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6136405&rfr_iscdi=true