Loading…

Mechanical Stress Reduction of Rotor Core of Interior Permanent Magnet Synchronous Motor

In this paper, the bridge shape of interior permanent magnet synchronous motor (IPMSM) is designed for integrated starter and generator (ISG) which is applied in hybrid electric vehicle (HEV). Mechanical stress of rotor core which is caused by centrifugal force is the main issue when IPMSM is operat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on magnetics 2012-02, Vol.48 (2), p.911-914
Main Authors: Jung, Jae-Woo, Lee, Byeong-Hwa, Kim, Do-Jin, Hong, Jung-Pyo, Kim, Jae-Young, Jeon, Seong-Min, Song, Do-Hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the bridge shape of interior permanent magnet synchronous motor (IPMSM) is designed for integrated starter and generator (ISG) which is applied in hybrid electric vehicle (HEV). Mechanical stress of rotor core which is caused by centrifugal force is the main issue when IPMSM is operated at high speed. The bridge is thin area in rotor core where is mechanically weak point and the shape of bridge significantly affects leakage flux and electromagnetic performance. Therefore, bridge should be designed considering both mechanic and electromagnetic characteristics. In the design process, we firstly find a shape of bridge has low leakage flux and mechanical stress. Next, the calculation of mechanical stress and the electromagnetic characteristics are performed by finite element analysis (FEA). The mechanical stress in rotor core is not maximized in steady high speed but dynamical high momentum. Therefore, transient FEA is necessary to consider the dynamic speed changing in real speed profile for durability experiment. Before the verification test, fatigue characteristic is investigated by using S-N curve of rotor core material. Lastly, the burst test of rotor is performed and the deformation of rotor core is compared between prototype and designed model to verify the design method.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2011.2172582