Loading…
Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers
Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender fact...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1281 |
container_issue | |
container_start_page | 1276 |
container_title | |
container_volume | |
creator | Hassan, F. Kotwal, M. R. A. Huda, M. N. |
description | Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier. |
doi_str_mv | 10.1109/WICT.2011.6141432 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6141432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6141432</ieee_id><sourcerecordid>6141432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23</originalsourceid><addsrcrecordid>eNo1kMFKxDAQhiMiqGsfQLzkBVqTNE2a41p0d2EXQQsel2kyrZFaS1KRfXsr7s5h5v-_w3cYQm45yzhn5v5tU9WZYJxniksuc3FGEqNLLpXOGReqPCfXp6LFJUli_GDzKGWEFFeke4Ch64EuX1-ow-i7gTYHGr_HMWCMfuhoh4PDQFuw01egP356P6LUz3v8i8NEYXAn3EBER9e7HbU9zI7WY4g35KKFPmJyvAtSPz3W1TrdPq821XKbesOmVDUGsZRoAZhEXRinAFumJCtAC2hRq1IzrcRMXZ7bQpSFKy1nhTWisCJfkLt_rUfE_Rj8J4TD_via_BeqDVhX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</creator><creatorcontrib>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</creatorcontrib><description>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</description><identifier>ISBN: 1467301272</identifier><identifier>ISBN: 9781467301275</identifier><identifier>EISBN: 9781467301268</identifier><identifier>EISBN: 9781467301251</identifier><identifier>EISBN: 1467301264</identifier><identifier>EISBN: 1467301256</identifier><identifier>DOI: 10.1109/WICT.2011.6141432</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; acoustic model ; automatic speech recognition ; Feature extraction ; gender effects suppression ; hidden Markov model ; Hidden Markov models ; Mel frequency cepstral coefficient ; Speech ; Speech recognition</subject><ispartof>2011 World Congress on Information and Communication Technologies, 2011, p.1276-1281</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6141432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6141432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hassan, F.</creatorcontrib><creatorcontrib>Kotwal, M. R. A.</creatorcontrib><creatorcontrib>Huda, M. N.</creatorcontrib><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><title>2011 World Congress on Information and Communication Technologies</title><addtitle>WICT</addtitle><description>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</description><subject>Accuracy</subject><subject>acoustic model</subject><subject>automatic speech recognition</subject><subject>Feature extraction</subject><subject>gender effects suppression</subject><subject>hidden Markov model</subject><subject>Hidden Markov models</subject><subject>Mel frequency cepstral coefficient</subject><subject>Speech</subject><subject>Speech recognition</subject><isbn>1467301272</isbn><isbn>9781467301275</isbn><isbn>9781467301268</isbn><isbn>9781467301251</isbn><isbn>1467301264</isbn><isbn>1467301256</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFKxDAQhiMiqGsfQLzkBVqTNE2a41p0d2EXQQsel2kyrZFaS1KRfXsr7s5h5v-_w3cYQm45yzhn5v5tU9WZYJxniksuc3FGEqNLLpXOGReqPCfXp6LFJUli_GDzKGWEFFeke4Ch64EuX1-ow-i7gTYHGr_HMWCMfuhoh4PDQFuw01egP356P6LUz3v8i8NEYXAn3EBER9e7HbU9zI7WY4g35KKFPmJyvAtSPz3W1TrdPq821XKbesOmVDUGsZRoAZhEXRinAFumJCtAC2hRq1IzrcRMXZ7bQpSFKy1nhTWisCJfkLt_rUfE_Rj8J4TD_via_BeqDVhX</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hassan, F.</creator><creator>Kotwal, M. R. A.</creator><creator>Huda, M. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><author>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>acoustic model</topic><topic>automatic speech recognition</topic><topic>Feature extraction</topic><topic>gender effects suppression</topic><topic>hidden Markov model</topic><topic>Hidden Markov models</topic><topic>Mel frequency cepstral coefficient</topic><topic>Speech</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hassan, F.</creatorcontrib><creatorcontrib>Kotwal, M. R. A.</creatorcontrib><creatorcontrib>Huda, M. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hassan, F.</au><au>Kotwal, M. R. A.</au><au>Huda, M. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</atitle><btitle>2011 World Congress on Information and Communication Technologies</btitle><stitle>WICT</stitle><date>2011-12</date><risdate>2011</risdate><spage>1276</spage><epage>1281</epage><pages>1276-1281</pages><isbn>1467301272</isbn><isbn>9781467301275</isbn><eisbn>9781467301268</eisbn><eisbn>9781467301251</eisbn><eisbn>1467301264</eisbn><eisbn>1467301256</eisbn><abstract>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</abstract><pub>IEEE</pub><doi>10.1109/WICT.2011.6141432</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467301272 |
ispartof | 2011 World Congress on Information and Communication Technologies, 2011, p.1276-1281 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6141432 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy acoustic model automatic speech recognition Feature extraction gender effects suppression hidden Markov model Hidden Markov models Mel frequency cepstral coefficient Speech Speech recognition |
title | Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bangla%20ASR%20design%20by%20suppressing%20gender%20factor%20with%20gender-independent%20and%20gender-based%20HMM%20classifiers&rft.btitle=2011%20World%20Congress%20on%20Information%20and%20Communication%20Technologies&rft.au=Hassan,%20F.&rft.date=2011-12&rft.spage=1276&rft.epage=1281&rft.pages=1276-1281&rft.isbn=1467301272&rft.isbn_list=9781467301275&rft_id=info:doi/10.1109/WICT.2011.6141432&rft.eisbn=9781467301268&rft.eisbn_list=9781467301251&rft.eisbn_list=1467301264&rft.eisbn_list=1467301256&rft_dat=%3Cieee_6IE%3E6141432%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6141432&rfr_iscdi=true |