Loading…

Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers

Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender fact...

Full description

Saved in:
Bibliographic Details
Main Authors: Hassan, F., Kotwal, M. R. A., Huda, M. N.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1281
container_issue
container_start_page 1276
container_title
container_volume
creator Hassan, F.
Kotwal, M. R. A.
Huda, M. N.
description Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.
doi_str_mv 10.1109/WICT.2011.6141432
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6141432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6141432</ieee_id><sourcerecordid>6141432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23</originalsourceid><addsrcrecordid>eNo1kMFKxDAQhiMiqGsfQLzkBVqTNE2a41p0d2EXQQsel2kyrZFaS1KRfXsr7s5h5v-_w3cYQm45yzhn5v5tU9WZYJxniksuc3FGEqNLLpXOGReqPCfXp6LFJUli_GDzKGWEFFeke4Ch64EuX1-ow-i7gTYHGr_HMWCMfuhoh4PDQFuw01egP356P6LUz3v8i8NEYXAn3EBER9e7HbU9zI7WY4g35KKFPmJyvAtSPz3W1TrdPq821XKbesOmVDUGsZRoAZhEXRinAFumJCtAC2hRq1IzrcRMXZ7bQpSFKy1nhTWisCJfkLt_rUfE_Rj8J4TD_via_BeqDVhX</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</creator><creatorcontrib>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</creatorcontrib><description>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</description><identifier>ISBN: 1467301272</identifier><identifier>ISBN: 9781467301275</identifier><identifier>EISBN: 9781467301268</identifier><identifier>EISBN: 9781467301251</identifier><identifier>EISBN: 1467301264</identifier><identifier>EISBN: 1467301256</identifier><identifier>DOI: 10.1109/WICT.2011.6141432</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; acoustic model ; automatic speech recognition ; Feature extraction ; gender effects suppression ; hidden Markov model ; Hidden Markov models ; Mel frequency cepstral coefficient ; Speech ; Speech recognition</subject><ispartof>2011 World Congress on Information and Communication Technologies, 2011, p.1276-1281</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6141432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6141432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hassan, F.</creatorcontrib><creatorcontrib>Kotwal, M. R. A.</creatorcontrib><creatorcontrib>Huda, M. N.</creatorcontrib><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><title>2011 World Congress on Information and Communication Technologies</title><addtitle>WICT</addtitle><description>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</description><subject>Accuracy</subject><subject>acoustic model</subject><subject>automatic speech recognition</subject><subject>Feature extraction</subject><subject>gender effects suppression</subject><subject>hidden Markov model</subject><subject>Hidden Markov models</subject><subject>Mel frequency cepstral coefficient</subject><subject>Speech</subject><subject>Speech recognition</subject><isbn>1467301272</isbn><isbn>9781467301275</isbn><isbn>9781467301268</isbn><isbn>9781467301251</isbn><isbn>1467301264</isbn><isbn>1467301256</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFKxDAQhiMiqGsfQLzkBVqTNE2a41p0d2EXQQsel2kyrZFaS1KRfXsr7s5h5v-_w3cYQm45yzhn5v5tU9WZYJxniksuc3FGEqNLLpXOGReqPCfXp6LFJUli_GDzKGWEFFeke4Ch64EuX1-ow-i7gTYHGr_HMWCMfuhoh4PDQFuw01egP356P6LUz3v8i8NEYXAn3EBER9e7HbU9zI7WY4g35KKFPmJyvAtSPz3W1TrdPq821XKbesOmVDUGsZRoAZhEXRinAFumJCtAC2hRq1IzrcRMXZ7bQpSFKy1nhTWisCJfkLt_rUfE_Rj8J4TD_via_BeqDVhX</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Hassan, F.</creator><creator>Kotwal, M. R. A.</creator><creator>Huda, M. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</title><author>Hassan, F. ; Kotwal, M. R. A. ; Huda, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>acoustic model</topic><topic>automatic speech recognition</topic><topic>Feature extraction</topic><topic>gender effects suppression</topic><topic>hidden Markov model</topic><topic>Hidden Markov models</topic><topic>Mel frequency cepstral coefficient</topic><topic>Speech</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Hassan, F.</creatorcontrib><creatorcontrib>Kotwal, M. R. A.</creatorcontrib><creatorcontrib>Huda, M. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hassan, F.</au><au>Kotwal, M. R. A.</au><au>Huda, M. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers</atitle><btitle>2011 World Congress on Information and Communication Technologies</btitle><stitle>WICT</stitle><date>2011-12</date><risdate>2011</risdate><spage>1276</spage><epage>1281</epage><pages>1276-1281</pages><isbn>1467301272</isbn><isbn>9781467301275</isbn><eisbn>9781467301268</eisbn><eisbn>9781467301251</eisbn><eisbn>1467301264</eisbn><eisbn>1467301256</eisbn><abstract>Hidden factor such as gender characteristic plays an important role on the performance of Bangla (widely used as Bengali) automatic speech recognition (ASR). If there is a suppression process that represses the decrease of differences in acoustic-likelihood among categories resulted from gender factors, a robust ASR system can be realized. In our previous paper, we proposed a technique of gender effects suppression that composed of two hidden Markov model (HMM)-based classifiers that focused on a gender factor. In the proposed study, we have designed a new ASR for Bangla by suppressing the gender effects, which embeds three HMM-based classifiers for corresponding male, female and geneder-independent (GI) characteristics. In an experiment on Bangla speech database prepared by us, the proposed system that incorporates GI-classifier has achieved a significant improvement of word correct rate, word accuracy and sentence correct rate in comparison with our previous method that did not incorporate GI-classifier.</abstract><pub>IEEE</pub><doi>10.1109/WICT.2011.6141432</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467301272
ispartof 2011 World Congress on Information and Communication Technologies, 2011, p.1276-1281
issn
language eng
recordid cdi_ieee_primary_6141432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
acoustic model
automatic speech recognition
Feature extraction
gender effects suppression
hidden Markov model
Hidden Markov models
Mel frequency cepstral coefficient
Speech
Speech recognition
title Bangla ASR design by suppressing gender factor with gender-independent and gender-based HMM classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A55%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bangla%20ASR%20design%20by%20suppressing%20gender%20factor%20with%20gender-independent%20and%20gender-based%20HMM%20classifiers&rft.btitle=2011%20World%20Congress%20on%20Information%20and%20Communication%20Technologies&rft.au=Hassan,%20F.&rft.date=2011-12&rft.spage=1276&rft.epage=1281&rft.pages=1276-1281&rft.isbn=1467301272&rft.isbn_list=9781467301275&rft_id=info:doi/10.1109/WICT.2011.6141432&rft.eisbn=9781467301268&rft.eisbn_list=9781467301251&rft.eisbn_list=1467301264&rft.eisbn_list=1467301256&rft_dat=%3Cieee_6IE%3E6141432%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-6b9ee84ecaa04e759d6aef06405a72afe76870762aefd33c5285d8c105c925c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6141432&rfr_iscdi=true