Loading…

Extensions and enhancements of decoupled extended Kalman filter training

We describe here three useful and practical extensions and enhancements of the decoupled extended Kalman filter (DEKF) neural network weight update procedure, which has served as the backbone for much of our applications-oriented research for the last six years. First, we provide a mechanism that co...

Full description

Saved in:
Bibliographic Details
Main Authors: Puskorius, G.V., Feldkamp, L.A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1883 vol.3
container_issue
container_start_page 1879
container_title
container_volume 3
creator Puskorius, G.V.
Feldkamp, L.A.
description We describe here three useful and practical extensions and enhancements of the decoupled extended Kalman filter (DEKF) neural network weight update procedure, which has served as the backbone for much of our applications-oriented research for the last six years. First, we provide a mechanism that constrains weight values to a pre-specified range during training to allow for fixed-point deployment of trained networks. Second, we examine modifications of DEKF training for alternative cost functions; as an example, we show how to use DEKF training to minimize a measure of relative entropy, rather than mean squared error, for pattern classification problems. Third, we describe an approximation of DEKF training that allows a multiple-output training problem to be treated with single-output training complexity.
doi_str_mv 10.1109/ICNN.1997.614185
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_614185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>614185</ieee_id><sourcerecordid>614185</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-54c3b8a8ca9f7d956bfc43c4eaf48a24b9f9c3ed2e879557bdc172cf45a5daf83</originalsourceid><addsrcrecordid>eNotj8FLwzAYxQMiqHP34Sn_QGvSJE1ylDLdcMzL7uNr8mVG2nQ0FfS_t7K9y3vwezx4hKw4Kzln9nnb7Pclt1aXNZfcqBvywLRhQvKqMndkmfMXmyWVtLW9J5v1z4QpxyFlCslTTJ-QHPaYpkyHQD264fvc4Uz-i34O79D1kGiI3YQjnUaIKabTI7kN0GVcXn1BDq_rQ7Mpdh9v2-ZlV0Sjp0JJJ1oDxoEN2ltVt8FJ4SRCkAYq2dpgnUBfodFWKd16x3XlglSgPAQjFuTpMhsR8XgeYw_j7_FyVfwBfpZLuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Extensions and enhancements of decoupled extended Kalman filter training</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Puskorius, G.V. ; Feldkamp, L.A.</creator><creatorcontrib>Puskorius, G.V. ; Feldkamp, L.A.</creatorcontrib><description>We describe here three useful and practical extensions and enhancements of the decoupled extended Kalman filter (DEKF) neural network weight update procedure, which has served as the backbone for much of our applications-oriented research for the last six years. First, we provide a mechanism that constrains weight values to a pre-specified range during training to allow for fixed-point deployment of trained networks. Second, we examine modifications of DEKF training for alternative cost functions; as an example, we show how to use DEKF training to minimize a measure of relative entropy, rather than mean squared error, for pattern classification problems. Third, we describe an approximation of DEKF training that allows a multiple-output training problem to be treated with single-output training complexity.</description><identifier>ISBN: 0780341228</identifier><identifier>ISBN: 9780780341227</identifier><identifier>DOI: 10.1109/ICNN.1997.614185</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backpropagation ; Cost function ; Covariance matrix ; Entropy ; Equations ; Laboratories ; Neural networks ; Pattern classification ; Recurrent neural networks ; Spine</subject><ispartof>Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.3, p.1879-1883 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/614185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/614185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Puskorius, G.V.</creatorcontrib><creatorcontrib>Feldkamp, L.A.</creatorcontrib><title>Extensions and enhancements of decoupled extended Kalman filter training</title><title>Proceedings of International Conference on Neural Networks (ICNN'97)</title><addtitle>ICNN</addtitle><description>We describe here three useful and practical extensions and enhancements of the decoupled extended Kalman filter (DEKF) neural network weight update procedure, which has served as the backbone for much of our applications-oriented research for the last six years. First, we provide a mechanism that constrains weight values to a pre-specified range during training to allow for fixed-point deployment of trained networks. Second, we examine modifications of DEKF training for alternative cost functions; as an example, we show how to use DEKF training to minimize a measure of relative entropy, rather than mean squared error, for pattern classification problems. Third, we describe an approximation of DEKF training that allows a multiple-output training problem to be treated with single-output training complexity.</description><subject>Backpropagation</subject><subject>Cost function</subject><subject>Covariance matrix</subject><subject>Entropy</subject><subject>Equations</subject><subject>Laboratories</subject><subject>Neural networks</subject><subject>Pattern classification</subject><subject>Recurrent neural networks</subject><subject>Spine</subject><isbn>0780341228</isbn><isbn>9780780341227</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8FLwzAYxQMiqHP34Sn_QGvSJE1ylDLdcMzL7uNr8mVG2nQ0FfS_t7K9y3vwezx4hKw4Kzln9nnb7Pclt1aXNZfcqBvywLRhQvKqMndkmfMXmyWVtLW9J5v1z4QpxyFlCslTTJ-QHPaYpkyHQD264fvc4Uz-i34O79D1kGiI3YQjnUaIKabTI7kN0GVcXn1BDq_rQ7Mpdh9v2-ZlV0Sjp0JJJ1oDxoEN2ltVt8FJ4SRCkAYq2dpgnUBfodFWKd16x3XlglSgPAQjFuTpMhsR8XgeYw_j7_FyVfwBfpZLuQ</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Puskorius, G.V.</creator><creator>Feldkamp, L.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Extensions and enhancements of decoupled extended Kalman filter training</title><author>Puskorius, G.V. ; Feldkamp, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-54c3b8a8ca9f7d956bfc43c4eaf48a24b9f9c3ed2e879557bdc172cf45a5daf83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Backpropagation</topic><topic>Cost function</topic><topic>Covariance matrix</topic><topic>Entropy</topic><topic>Equations</topic><topic>Laboratories</topic><topic>Neural networks</topic><topic>Pattern classification</topic><topic>Recurrent neural networks</topic><topic>Spine</topic><toplevel>online_resources</toplevel><creatorcontrib>Puskorius, G.V.</creatorcontrib><creatorcontrib>Feldkamp, L.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Explore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Puskorius, G.V.</au><au>Feldkamp, L.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Extensions and enhancements of decoupled extended Kalman filter training</atitle><btitle>Proceedings of International Conference on Neural Networks (ICNN'97)</btitle><stitle>ICNN</stitle><date>1997</date><risdate>1997</risdate><volume>3</volume><spage>1879</spage><epage>1883 vol.3</epage><pages>1879-1883 vol.3</pages><isbn>0780341228</isbn><isbn>9780780341227</isbn><abstract>We describe here three useful and practical extensions and enhancements of the decoupled extended Kalman filter (DEKF) neural network weight update procedure, which has served as the backbone for much of our applications-oriented research for the last six years. First, we provide a mechanism that constrains weight values to a pre-specified range during training to allow for fixed-point deployment of trained networks. Second, we examine modifications of DEKF training for alternative cost functions; as an example, we show how to use DEKF training to minimize a measure of relative entropy, rather than mean squared error, for pattern classification problems. Third, we describe an approximation of DEKF training that allows a multiple-output training problem to be treated with single-output training complexity.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1997.614185</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780341228
ispartof Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.3, p.1879-1883 vol.3
issn
language eng
recordid cdi_ieee_primary_614185
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Backpropagation
Cost function
Covariance matrix
Entropy
Equations
Laboratories
Neural networks
Pattern classification
Recurrent neural networks
Spine
title Extensions and enhancements of decoupled extended Kalman filter training
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Extensions%20and%20enhancements%20of%20decoupled%20extended%20Kalman%20filter%20training&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Neural%20Networks%20(ICNN'97)&rft.au=Puskorius,%20G.V.&rft.date=1997&rft.volume=3&rft.spage=1879&rft.epage=1883%20vol.3&rft.pages=1879-1883%20vol.3&rft.isbn=0780341228&rft.isbn_list=9780780341227&rft_id=info:doi/10.1109/ICNN.1997.614185&rft_dat=%3Cieee_6IE%3E614185%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-54c3b8a8ca9f7d956bfc43c4eaf48a24b9f9c3ed2e879557bdc172cf45a5daf83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=614185&rfr_iscdi=true