Loading…

An On-Chip Network Fabric Supporting Coarse-Grained Processor Array

Coarse grained arrays (CGAs) with run-time reconfigurability play an important role in accelerating reconfigurable computing applications. It is challenging to design on-chip communication networks (OCNs) for such CGAs with dynamic run-time reconfigurability whilst satisfying the tight budgets of po...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems 2013-01, Vol.21 (1), p.178-182
Main Authors: PHAM, Phi-Hung, MAU, Phuong, KIM, Jungmoon, KIM, Chulwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coarse grained arrays (CGAs) with run-time reconfigurability play an important role in accelerating reconfigurable computing applications. It is challenging to design on-chip communication networks (OCNs) for such CGAs with dynamic run-time reconfigurability whilst satisfying the tight budgets of power and area for an embedded system. This paper presents a silicon-proven design of a 64-PE circuit-switched OCN fabric with a dynamic path-setup scheme capable of supporting an embedded coarse-grained processor array. A proof-of-concept test chip fabricated in a 0.13 μm CMOS process occupies a silicon area of 23 mm 2 and consumes a peak power of 200 mW @ 128 MHz and 1.2 Vcc, at room temperature. The OCN overhead consumes 9.4% of the area and 18% of the power of the total chip. Experimental results and analysis show that the proposed OCN fabric with its dynamic path-setup is suitable for use in an embedded CGA supporting fast run-time reconfigurability.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2011.2181546