Loading…
Unified formulation for training recurrent networks with derivative adaptive critics
We present a procedure for obtaining the derivatives used in training a recurrent network that combines in a unified framework the techniques of backpropagation through time and derivative adaptive critics. The resulting formulation is consistent with previous descriptions, but has the advantage of...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2272 vol.4 |
container_issue | |
container_start_page | 2268 |
container_title | |
container_volume | 4 |
creator | Feldkamp, L.A. Puskorius, G.V. Prokhorov, D.V. |
description | We present a procedure for obtaining the derivatives used in training a recurrent network that combines in a unified framework the techniques of backpropagation through time and derivative adaptive critics. The resulting formulation is consistent with previous descriptions, but has the advantage of allowing the mentioned techniques to be used together in a proportion that is appropriate to a given problem. |
doi_str_mv | 10.1109/ICNN.1997.614397 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_614397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>614397</ieee_id><sourcerecordid>614397</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-b9810bd699bc5b201b5690fcbef21191839697850f65ed2b082c3b70029579ed3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKB0j1j5BxL8SGLfJYp4VKrKJqyrOLmGC61TOW4r_p7QMps5i9FohrE7KXIpBTws6tUqlwAmr2ShwVywG2Gs0IVUyl6x-Th-iUlFWUAF16x5D-QJe-6HuN1v2kRD-GOeYkuBwgeP2O1jxJB4wHQc4vfIj5Q-eY-RDlP-gLzt290JukiJuvGWXfp2M-L832eseX5q6tds-fayqB-XGVmTMgdWCtdXAK4rnRLSlRUI3zn0SkqQVk8LjS2Fr0rslRNWddoZIRSUBrDXM3Z_riVEXO8ibdv4sz7f1r_eLU8t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Unified formulation for training recurrent networks with derivative adaptive critics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Feldkamp, L.A. ; Puskorius, G.V. ; Prokhorov, D.V.</creator><creatorcontrib>Feldkamp, L.A. ; Puskorius, G.V. ; Prokhorov, D.V.</creatorcontrib><description>We present a procedure for obtaining the derivatives used in training a recurrent network that combines in a unified framework the techniques of backpropagation through time and derivative adaptive critics. The resulting formulation is consistent with previous descriptions, but has the advantage of allowing the mentioned techniques to be used together in a proportion that is appropriate to a given problem.</description><identifier>ISBN: 0780341228</identifier><identifier>ISBN: 9780780341227</identifier><identifier>DOI: 10.1109/ICNN.1997.614397</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Area measurement ; Backpropagation ; Computational intelligence ; Dynamic programming ; Equations ; Laboratories ; Learning ; Neurodynamics ; Programmable control</subject><ispartof>Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.4, p.2268-2272 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/614397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/614397$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feldkamp, L.A.</creatorcontrib><creatorcontrib>Puskorius, G.V.</creatorcontrib><creatorcontrib>Prokhorov, D.V.</creatorcontrib><title>Unified formulation for training recurrent networks with derivative adaptive critics</title><title>Proceedings of International Conference on Neural Networks (ICNN'97)</title><addtitle>ICNN</addtitle><description>We present a procedure for obtaining the derivatives used in training a recurrent network that combines in a unified framework the techniques of backpropagation through time and derivative adaptive critics. The resulting formulation is consistent with previous descriptions, but has the advantage of allowing the mentioned techniques to be used together in a proportion that is appropriate to a given problem.</description><subject>Adaptive systems</subject><subject>Area measurement</subject><subject>Backpropagation</subject><subject>Computational intelligence</subject><subject>Dynamic programming</subject><subject>Equations</subject><subject>Laboratories</subject><subject>Learning</subject><subject>Neurodynamics</subject><subject>Programmable control</subject><isbn>0780341228</isbn><isbn>9780780341227</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1997</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAURC0hJKB0j1j5BxL8SGLfJYp4VKrKJqyrOLmGC61TOW4r_p7QMps5i9FohrE7KXIpBTws6tUqlwAmr2ShwVywG2Gs0IVUyl6x-Th-iUlFWUAF16x5D-QJe-6HuN1v2kRD-GOeYkuBwgeP2O1jxJB4wHQc4vfIj5Q-eY-RDlP-gLzt290JukiJuvGWXfp2M-L832eseX5q6tds-fayqB-XGVmTMgdWCtdXAK4rnRLSlRUI3zn0SkqQVk8LjS2Fr0rslRNWddoZIRSUBrDXM3Z_riVEXO8ibdv4sz7f1r_eLU8t</recordid><startdate>1997</startdate><enddate>1997</enddate><creator>Feldkamp, L.A.</creator><creator>Puskorius, G.V.</creator><creator>Prokhorov, D.V.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1997</creationdate><title>Unified formulation for training recurrent networks with derivative adaptive critics</title><author>Feldkamp, L.A. ; Puskorius, G.V. ; Prokhorov, D.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-b9810bd699bc5b201b5690fcbef21191839697850f65ed2b082c3b70029579ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adaptive systems</topic><topic>Area measurement</topic><topic>Backpropagation</topic><topic>Computational intelligence</topic><topic>Dynamic programming</topic><topic>Equations</topic><topic>Laboratories</topic><topic>Learning</topic><topic>Neurodynamics</topic><topic>Programmable control</topic><toplevel>online_resources</toplevel><creatorcontrib>Feldkamp, L.A.</creatorcontrib><creatorcontrib>Puskorius, G.V.</creatorcontrib><creatorcontrib>Prokhorov, D.V.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feldkamp, L.A.</au><au>Puskorius, G.V.</au><au>Prokhorov, D.V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Unified formulation for training recurrent networks with derivative adaptive critics</atitle><btitle>Proceedings of International Conference on Neural Networks (ICNN'97)</btitle><stitle>ICNN</stitle><date>1997</date><risdate>1997</risdate><volume>4</volume><spage>2268</spage><epage>2272 vol.4</epage><pages>2268-2272 vol.4</pages><isbn>0780341228</isbn><isbn>9780780341227</isbn><abstract>We present a procedure for obtaining the derivatives used in training a recurrent network that combines in a unified framework the techniques of backpropagation through time and derivative adaptive critics. The resulting formulation is consistent with previous descriptions, but has the advantage of allowing the mentioned techniques to be used together in a proportion that is appropriate to a given problem.</abstract><pub>IEEE</pub><doi>10.1109/ICNN.1997.614397</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780341228 |
ispartof | Proceedings of International Conference on Neural Networks (ICNN'97), 1997, Vol.4, p.2268-2272 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_614397 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems Area measurement Backpropagation Computational intelligence Dynamic programming Equations Laboratories Learning Neurodynamics Programmable control |
title | Unified formulation for training recurrent networks with derivative adaptive critics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Unified%20formulation%20for%20training%20recurrent%20networks%20with%20derivative%20adaptive%20critics&rft.btitle=Proceedings%20of%20International%20Conference%20on%20Neural%20Networks%20(ICNN'97)&rft.au=Feldkamp,%20L.A.&rft.date=1997&rft.volume=4&rft.spage=2268&rft.epage=2272%20vol.4&rft.pages=2268-2272%20vol.4&rft.isbn=0780341228&rft.isbn_list=9780780341227&rft_id=info:doi/10.1109/ICNN.1997.614397&rft_dat=%3Cieee_6IE%3E614397%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i87t-b9810bd699bc5b201b5690fcbef21191839697850f65ed2b082c3b70029579ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=614397&rfr_iscdi=true |