Loading…
Coupled electromagnetic and thermohydraulic analysis of the ITER cable joint
An analysis of the current distribution in a joint of International Tokamak ITER has been carried out using two separated models (3D static transport current model and 3D thin conducting shell model for eddy current). The calculations were made by two finite element packages KOMPOT/C and TYPHOON. Th...
Saved in:
Published in: | IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.465-468 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analysis of the current distribution in a joint of International Tokamak ITER has been carried out using two separated models (3D static transport current model and 3D thin conducting shell model for eddy current). The calculations were made by two finite element packages KOMPOT/C and TYPHOON. The total resistance of the joint and the total Joule loss created by the transport current and induced currents due to the external magnetic field change were estimated. Different modes of ITER operation were considered. Thermohydraulic response of the cooling system on transient and steady state disturbances in the joint were modeled by the VINCENTA code, which allows to define the transient temperature behavior of the joint assembly materials and Cable-In-Conduit Conductor (CICC) cooled by supercritical helium which flows in thermally and hydraulically coupled channels. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.614534 |