Loading…

Prediction of burnout of a conduction-cooled BSCCO current lead

A one-dimensional heat conduction model is employed to predict burnout of Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/ current lead. The upper end of the lead is assumed to be at 77 K and the lower end is at 4 K. The results show that burnout always occurs at the warmer end of the lead. The lead reaches it...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.696-699
Main Authors: Seol, S.Y., Cha, Y.S., Niemann, R.C., Hull, J.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A one-dimensional heat conduction model is employed to predict burnout of Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/ current lead. The upper end of the lead is assumed to be at 77 K and the lower end is at 4 K. The results show that burnout always occurs at the warmer end of the lead. The lead reaches its burnout temperature in two distinct stages. Initially, the temperature rises slowly when part of the lead is in flux-flow state. As the local temperature reaches the critical temperature, it begins to increase sharply. Burnout time depends strongly on flux-flow resistivity.
ISSN:1051-8223
1558-2515
DOI:10.1109/77.614599