Loading…
Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem
Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper descr...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 351 |
container_issue | |
container_start_page | 346 |
container_title | |
container_volume | 1 |
creator | Kanda, J. Y. de Carvalho, A. C. P. L. F. Hruschka, E. R. Soares, C. |
description | Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper describes a meta-learning-based approach to select optimization methods for the TSP. Multilayer perceptron (MLP) networks are trained with TSP examples. These examples are described by a set of TSP characteristics and the cost of solutions obtained by a set of optimization methods. The trained MLP network model is then used to predict a ranking of these methods for a new TSP instance. Correlation measures are used to compare the predicted ranking with the ranking previously known. The obtained results suggest that the proposed approach is promising. |
doi_str_mv | 10.1109/ICMLA.2011.153 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6146996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6146996</ieee_id><sourcerecordid>6146996</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ee0bd22b05941cc16c83150c4d026bcce9e4b622a939278c87079151448ede323</originalsourceid><addsrcrecordid>eNotj01Lw0AYhFdEUGuuXrzsH0jcdz-zxxL8KKQoNp7LZvPWruRDdqPgv7elzmUYnmFgCLkFVgAwe7-q1vWy4AygACXOyDUz2iqpmeHnJLOmBKmM4SAkvyRZSp_sIK2tBXNFNu8pjB90jbPLe3RxPKZ5om_op2HAsTuhPX7HkObgE91Nkc57pE10P9gf6xvXYxrcSF_j1PY43JCLnesTZv--IM3jQ1M95_XL06pa1nmwbM4RWdtx3jJlJXgP2pcCFPOyY1y33qNF2WrOnRWWm9KXhhkLCqQssUPBxYLcnWYDIm6_Yhhc_N1qkIdrWvwBVTJP3Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kanda, J. Y. ; de Carvalho, A. C. P. L. F. ; Hruschka, E. R. ; Soares, C.</creator><creatorcontrib>Kanda, J. Y. ; de Carvalho, A. C. P. L. F. ; Hruschka, E. R. ; Soares, C.</creatorcontrib><description>Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper describes a meta-learning-based approach to select optimization methods for the TSP. Multilayer perceptron (MLP) networks are trained with TSP examples. These examples are described by a set of TSP characteristics and the cost of solutions obtained by a set of optimization methods. The trained MLP network model is then used to predict a ranking of these methods for a new TSP instance. Correlation measures are used to compare the predicted ranking with the ranking previously known. The obtained results suggest that the proposed approach is promising.</description><identifier>ISBN: 9781457721342</identifier><identifier>ISBN: 1457721341</identifier><identifier>EISBN: 0769546072</identifier><identifier>EISBN: 9780769546070</identifier><identifier>DOI: 10.1109/ICMLA.2011.153</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm selection ; Cities and towns ; Genetic algorithms ; meta-learning ; multilayer perceptron network ; Neurons ; Optimization methods ; Prediction algorithms ; Predictive models ; traveling salesman problem</subject><ispartof>2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.1, p.346-351</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6146996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6146996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kanda, J. Y.</creatorcontrib><creatorcontrib>de Carvalho, A. C. P. L. F.</creatorcontrib><creatorcontrib>Hruschka, E. R.</creatorcontrib><creatorcontrib>Soares, C.</creatorcontrib><title>Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem</title><title>2011 10th International Conference on Machine Learning and Applications and Workshops</title><addtitle>icmla</addtitle><description>Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper describes a meta-learning-based approach to select optimization methods for the TSP. Multilayer perceptron (MLP) networks are trained with TSP examples. These examples are described by a set of TSP characteristics and the cost of solutions obtained by a set of optimization methods. The trained MLP network model is then used to predict a ranking of these methods for a new TSP instance. Correlation measures are used to compare the predicted ranking with the ranking previously known. The obtained results suggest that the proposed approach is promising.</description><subject>Algorithm selection</subject><subject>Cities and towns</subject><subject>Genetic algorithms</subject><subject>meta-learning</subject><subject>multilayer perceptron network</subject><subject>Neurons</subject><subject>Optimization methods</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>traveling salesman problem</subject><isbn>9781457721342</isbn><isbn>1457721341</isbn><isbn>0769546072</isbn><isbn>9780769546070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj01Lw0AYhFdEUGuuXrzsH0jcdz-zxxL8KKQoNp7LZvPWruRDdqPgv7elzmUYnmFgCLkFVgAwe7-q1vWy4AygACXOyDUz2iqpmeHnJLOmBKmM4SAkvyRZSp_sIK2tBXNFNu8pjB90jbPLe3RxPKZ5om_op2HAsTuhPX7HkObgE91Nkc57pE10P9gf6xvXYxrcSF_j1PY43JCLnesTZv--IM3jQ1M95_XL06pa1nmwbM4RWdtx3jJlJXgP2pcCFPOyY1y33qNF2WrOnRWWm9KXhhkLCqQssUPBxYLcnWYDIm6_Yhhc_N1qkIdrWvwBVTJP3Q</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Kanda, J. Y.</creator><creator>de Carvalho, A. C. P. L. F.</creator><creator>Hruschka, E. R.</creator><creator>Soares, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem</title><author>Kanda, J. Y. ; de Carvalho, A. C. P. L. F. ; Hruschka, E. R. ; Soares, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ee0bd22b05941cc16c83150c4d026bcce9e4b622a939278c87079151448ede323</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm selection</topic><topic>Cities and towns</topic><topic>Genetic algorithms</topic><topic>meta-learning</topic><topic>multilayer perceptron network</topic><topic>Neurons</topic><topic>Optimization methods</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>traveling salesman problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Kanda, J. Y.</creatorcontrib><creatorcontrib>de Carvalho, A. C. P. L. F.</creatorcontrib><creatorcontrib>Hruschka, E. R.</creatorcontrib><creatorcontrib>Soares, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kanda, J. Y.</au><au>de Carvalho, A. C. P. L. F.</au><au>Hruschka, E. R.</au><au>Soares, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem</atitle><btitle>2011 10th International Conference on Machine Learning and Applications and Workshops</btitle><stitle>icmla</stitle><date>2011-12</date><risdate>2011</risdate><volume>1</volume><spage>346</spage><epage>351</epage><pages>346-351</pages><isbn>9781457721342</isbn><isbn>1457721341</isbn><eisbn>0769546072</eisbn><eisbn>9780769546070</eisbn><abstract>Several optimization methods can find good solutions for different instances of the Traveling Salesman Problem (TSP). Since there is no method that generates the best solution for all instances, the selection of the most promising method for a given TSP instance is a difficult task. This paper describes a meta-learning-based approach to select optimization methods for the TSP. Multilayer perceptron (MLP) networks are trained with TSP examples. These examples are described by a set of TSP characteristics and the cost of solutions obtained by a set of optimization methods. The trained MLP network model is then used to predict a ranking of these methods for a new TSP instance. Correlation measures are used to compare the predicted ranking with the ranking previously known. The obtained results suggest that the proposed approach is promising.</abstract><pub>IEEE</pub><doi>10.1109/ICMLA.2011.153</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457721342 |
ispartof | 2011 10th International Conference on Machine Learning and Applications and Workshops, 2011, Vol.1, p.346-351 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6146996 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm selection Cities and towns Genetic algorithms meta-learning multilayer perceptron network Neurons Optimization methods Prediction algorithms Predictive models traveling salesman problem |
title | Using Meta-learning to Recommend Meta-heuristics for the Traveling Salesman Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Meta-learning%20to%20Recommend%20Meta-heuristics%20for%20the%20Traveling%20Salesman%20Problem&rft.btitle=2011%2010th%20International%20Conference%20on%20Machine%20Learning%20and%20Applications%20and%20Workshops&rft.au=Kanda,%20J.%20Y.&rft.date=2011-12&rft.volume=1&rft.spage=346&rft.epage=351&rft.pages=346-351&rft.isbn=9781457721342&rft.isbn_list=1457721341&rft_id=info:doi/10.1109/ICMLA.2011.153&rft.eisbn=0769546072&rft.eisbn_list=9780769546070&rft_dat=%3Cieee_6IE%3E6146996%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-ee0bd22b05941cc16c83150c4d026bcce9e4b622a939278c87079151448ede323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6146996&rfr_iscdi=true |