Loading…

Plasma deposition of thin films utilizing the anodic vacuum arc

Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 1990-12, Vol.18 (6), p.895-903
Main Authors: Ehrich, H., Hasse, B., Mausbach, M., Muller, K.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10/sup -4/ mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 10/sup 15/-10/sup 18//m/sup 3/; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate.< >
ISSN:0093-3813
1939-9375
DOI:10.1109/27.61500