Loading…

Plasma deposition of thin films utilizing the anodic vacuum arc

Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 1990-12, Vol.18 (6), p.895-903
Main Authors: Ehrich, H., Hasse, B., Mausbach, M., Muller, K.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73
cites cdi_FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73
container_end_page 903
container_issue 6
container_start_page 895
container_title IEEE transactions on plasma science
container_volume 18
creator Ehrich, H.
Hasse, B.
Mausbach, M.
Muller, K.G.
description Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10/sup -4/ mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 10/sup 15/-10/sup 18//m/sup 3/; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate.< >
doi_str_mv 10.1109/27.61500
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_61500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>61500</ieee_id><sourcerecordid>28797397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73</originalsourceid><addsrcrecordid>eNqN0E1LxDAQBuAgCq6r4NVbLoqXrpOkbZqTyOIXLOhBz2U6TTTSj7VphfXXW-2iV08DMw8vzMvYsYCFEGAupF6kIgHYYTNhlImM0skumwEYFalMqH12EMIbgIgTkDN2-VhhqJGXdt0G3_u24a3j_atvuPNVHfjQ-8p_-uZlXFqOTVt64h9Iw1Bz7OiQ7Tmsgj3azjl7vrl-Wt5Fq4fb--XVKqIYRB_FlsBAKYQVmUCpnAYiTaVScYmGoCxj0oogSSGV2hUFYmGLxAA4IeV4mrOzKXfdte-DDX1e-0C2qrCx7RBymWmjlfkPjI3OtBrh-QSpa0PorMvXna-x2-QC8u8qc6nznypHerrNxEBYuQ4b8uHPm2R8UqajO5mct9b-nqeML5_Sej4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28497873</pqid></control><display><type>article</type><title>Plasma deposition of thin films utilizing the anodic vacuum arc</title><source>IEEE Xplore (Online service)</source><creator>Ehrich, H. ; Hasse, B. ; Mausbach, M. ; Muller, K.G.</creator><creatorcontrib>Ehrich, H. ; Hasse, B. ; Mausbach, M. ; Muller, K.G.</creatorcontrib><description>Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10/sup -4/ mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 10/sup 15/-10/sup 18//m/sup 3/; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate.&lt; &gt;</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.61500</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Anodes ; Coatings ; Conducting materials ; Cross-disciplinary physics: materials science; rheology ; Electrons ; Exact sciences and technology ; Inorganic materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Optical materials ; Physics ; Plasma density ; Plasma sources ; Sputtering ; Vacuum arcs ; Vacuum deposition</subject><ispartof>IEEE transactions on plasma science, 1990-12, Vol.18 (6), p.895-903</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73</citedby><cites>FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/61500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19540126$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ehrich, H.</creatorcontrib><creatorcontrib>Hasse, B.</creatorcontrib><creatorcontrib>Mausbach, M.</creatorcontrib><creatorcontrib>Muller, K.G.</creatorcontrib><title>Plasma deposition of thin films utilizing the anodic vacuum arc</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10/sup -4/ mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 10/sup 15/-10/sup 18//m/sup 3/; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate.&lt; &gt;</description><subject>Anodes</subject><subject>Coatings</subject><subject>Conducting materials</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrons</subject><subject>Exact sciences and technology</subject><subject>Inorganic materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Optical materials</subject><subject>Physics</subject><subject>Plasma density</subject><subject>Plasma sources</subject><subject>Sputtering</subject><subject>Vacuum arcs</subject><subject>Vacuum deposition</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LxDAQBuAgCq6r4NVbLoqXrpOkbZqTyOIXLOhBz2U6TTTSj7VphfXXW-2iV08DMw8vzMvYsYCFEGAupF6kIgHYYTNhlImM0skumwEYFalMqH12EMIbgIgTkDN2-VhhqJGXdt0G3_u24a3j_atvuPNVHfjQ-8p_-uZlXFqOTVt64h9Iw1Bz7OiQ7Tmsgj3azjl7vrl-Wt5Fq4fb--XVKqIYRB_FlsBAKYQVmUCpnAYiTaVScYmGoCxj0oogSSGV2hUFYmGLxAA4IeV4mrOzKXfdte-DDX1e-0C2qrCx7RBymWmjlfkPjI3OtBrh-QSpa0PorMvXna-x2-QC8u8qc6nznypHerrNxEBYuQ4b8uHPm2R8UqajO5mct9b-nqeML5_Sej4</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Ehrich, H.</creator><creator>Hasse, B.</creator><creator>Mausbach, M.</creator><creator>Muller, K.G.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>19901201</creationdate><title>Plasma deposition of thin films utilizing the anodic vacuum arc</title><author>Ehrich, H. ; Hasse, B. ; Mausbach, M. ; Muller, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Anodes</topic><topic>Coatings</topic><topic>Conducting materials</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrons</topic><topic>Exact sciences and technology</topic><topic>Inorganic materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Optical materials</topic><topic>Physics</topic><topic>Plasma density</topic><topic>Plasma sources</topic><topic>Sputtering</topic><topic>Vacuum arcs</topic><topic>Vacuum deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehrich, H.</creatorcontrib><creatorcontrib>Hasse, B.</creatorcontrib><creatorcontrib>Mausbach, M.</creatorcontrib><creatorcontrib>Muller, K.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrich, H.</au><au>Hasse, B.</au><au>Mausbach, M.</au><au>Muller, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma deposition of thin films utilizing the anodic vacuum arc</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>1990-12-01</date><risdate>1990</risdate><volume>18</volume><issue>6</issue><spage>895</spage><epage>903</epage><pages>895-903</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Anodic vacuum arcs operating with cold cathodes in the spot mode and hot evaporating anodes are investigated to explore their technical potential as a plasma deposition technique. This discharge provides a unique source of a highly ionized, metal vapor plasma by autogeneration of the working gas to evaporation of the anode. This gas-free and droplet-free metal vapor plasma expands into the ambient vacuum (10/sup -4/ mbar) and produces thin metallic films at the surface of substrates. An analysis of Al and Cu plasmas at the position of a possible substrate for arc currents between 20 and 200 A leads to the following results: electron densities, 10/sup 15/-10/sup 18//m/sup 3/; degree of ionization, 0.5-25%; directed ion energy, 5 eV; and electron temperatures, 0.2-1 eV. Metallic coatings generated with deposition rates between 0.1 and 100 nm/s show the following properties: purity, 99.9%; polycrystalline structure with grain sizes between a few and a few hundred nm, same mass density as the respective bulk material, electrical conductivity rather close to that of the bulk material, and excellent optical properties. The coatings show good adhesion, which can be enhanced by a plasma-supported pretreatment of the substrate surface and by an acceleration of the ions towards the substrate.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.61500</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 1990-12, Vol.18 (6), p.895-903
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_61500
source IEEE Xplore (Online service)
subjects Anodes
Coatings
Conducting materials
Cross-disciplinary physics: materials science
rheology
Electrons
Exact sciences and technology
Inorganic materials
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Optical materials
Physics
Plasma density
Plasma sources
Sputtering
Vacuum arcs
Vacuum deposition
title Plasma deposition of thin films utilizing the anodic vacuum arc
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma%20deposition%20of%20thin%20films%20utilizing%20the%20anodic%20vacuum%20arc&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Ehrich,%20H.&rft.date=1990-12-01&rft.volume=18&rft.issue=6&rft.spage=895&rft.epage=903&rft.pages=895-903&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.61500&rft_dat=%3Cproquest_ieee_%3E28797397%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-4ec090d11e181a23f70cc7cd334da9c0dd4c73c0560627fbbaabeb5900f122c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28497873&rft_id=info:pmid/&rft_ieee_id=61500&rfr_iscdi=true