Loading…
Disparity energy model using a trained neuronal population
Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain do...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding disparity information implicitly by employing a trained binocular neuronal population. This model allows to decode disparity information in a way similar to how our visual system could have developed this ability, during evolution, in order to accurately estimate disparity of entire scenes. |
---|---|
ISSN: | 2162-7843 |
DOI: | 10.1109/ISSPIT.2011.6151575 |