Loading…

Average consensus on Riemannian manifolds with bounded curvature

Consensus algorithms are a popular choice for computing averages and other similar quantities in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements live in a Euclidean space. In this paper, we propose distributed algorithms for averaging measurement...

Full description

Saved in:
Bibliographic Details
Main Authors: Tron, R., Afsari, B., Vidal, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7862
container_issue
container_start_page 7855
container_title
container_volume
creator Tron, R.
Afsari, B.
Vidal, R.
description Consensus algorithms are a popular choice for computing averages and other similar quantities in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements live in a Euclidean space. In this paper, we propose distributed algorithms for averaging measurements lying in a Riemannian manifold. We first propose a direct extension of the classical average consensus algorithm and derive sufficient conditions for its convergence to a consensus configuration. Such conditions depend on the network connectivity, the geometric configuration of the measurements and the curvature of the manifold. However, the consensus configuration to which the algorithm converges may not coincide with the Fréchet mean of the measurements. We thus propose a second algorithm that performs consensus in the tangent space. This algorithm is guaranteed to converge to the Fréchet mean of the measurements, but needs to be initialized at a consensus configuration. By combining these two methods, we obtain a distributed algorithm that converges to the Fréchet mean of the measurements. We test the proposed algorithms on synthetic data sampled from manifolds such as the space of rotations, the sphere and the Grassmann manifold.
doi_str_mv 10.1109/CDC.2011.6160965
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6160965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6160965</ieee_id><sourcerecordid>6160965</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-c1dc683239d79484611e9b21c6181a777220d8ee6ac01fd183d74b3088e66df03</originalsourceid><addsrcrecordid>eNotz81KAzEUQOGICra1e8FNXmDqvcn0JtlZxvoDBUF0XTKTOxppMzKZqfj2Cnb17Q4cIa4QFojgbqq7aqEAcUFI4Gh5IqZYktFQLo0-FXNnLBIqW1oAOhMTQIeFUkgXYprzJwBYIJqI29WBe__OsulS5pTHLLskXyLvfUrRJ_lnbLtdyPI7Dh-y7sYUOMhm7A9-GHu-FOet32WeH52Jt_v1a_VYbJ4fnqrVpogKzVA0GBqyWmkXjCttSYjsaoUNoUVvjFEKgmUm3wC2Aa0Opqw1WMtEoQU9E9f_3cjM268-7n3_sz3e61_SFEr3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Average consensus on Riemannian manifolds with bounded curvature</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tron, R. ; Afsari, B. ; Vidal, R.</creator><creatorcontrib>Tron, R. ; Afsari, B. ; Vidal, R.</creatorcontrib><description>Consensus algorithms are a popular choice for computing averages and other similar quantities in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements live in a Euclidean space. In this paper, we propose distributed algorithms for averaging measurements lying in a Riemannian manifold. We first propose a direct extension of the classical average consensus algorithm and derive sufficient conditions for its convergence to a consensus configuration. Such conditions depend on the network connectivity, the geometric configuration of the measurements and the curvature of the manifold. However, the consensus configuration to which the algorithm converges may not coincide with the Fréchet mean of the measurements. We thus propose a second algorithm that performs consensus in the tangent space. This algorithm is guaranteed to converge to the Fréchet mean of the measurements, but needs to be initialized at a consensus configuration. By combining these two methods, we obtain a distributed algorithm that converges to the Fréchet mean of the measurements. We test the proposed algorithms on synthetic data sampled from manifolds such as the space of rotations, the sphere and the Grassmann manifold.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9781612848006</identifier><identifier>ISBN: 1612848001</identifier><identifier>EISBN: 1467304573</identifier><identifier>EISBN: 1612847994</identifier><identifier>EISBN: 9781612847993</identifier><identifier>EISBN: 161284801X</identifier><identifier>EISBN: 9781612848013</identifier><identifier>EISBN: 9781467304573</identifier><identifier>DOI: 10.1109/CDC.2011.6160965</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Distributed algorithms ; Manganese ; Manifolds ; Measurement ; Protocols ; Vectors</subject><ispartof>2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, p.7855-7862</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6160965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6160965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tron, R.</creatorcontrib><creatorcontrib>Afsari, B.</creatorcontrib><creatorcontrib>Vidal, R.</creatorcontrib><title>Average consensus on Riemannian manifolds with bounded curvature</title><title>2011 50th IEEE Conference on Decision and Control and European Control Conference</title><addtitle>CDC</addtitle><description>Consensus algorithms are a popular choice for computing averages and other similar quantities in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements live in a Euclidean space. In this paper, we propose distributed algorithms for averaging measurements lying in a Riemannian manifold. We first propose a direct extension of the classical average consensus algorithm and derive sufficient conditions for its convergence to a consensus configuration. Such conditions depend on the network connectivity, the geometric configuration of the measurements and the curvature of the manifold. However, the consensus configuration to which the algorithm converges may not coincide with the Fréchet mean of the measurements. We thus propose a second algorithm that performs consensus in the tangent space. This algorithm is guaranteed to converge to the Fréchet mean of the measurements, but needs to be initialized at a consensus configuration. By combining these two methods, we obtain a distributed algorithm that converges to the Fréchet mean of the measurements. We test the proposed algorithms on synthetic data sampled from manifolds such as the space of rotations, the sphere and the Grassmann manifold.</description><subject>Convergence</subject><subject>Distributed algorithms</subject><subject>Manganese</subject><subject>Manifolds</subject><subject>Measurement</subject><subject>Protocols</subject><subject>Vectors</subject><issn>0191-2216</issn><isbn>9781612848006</isbn><isbn>1612848001</isbn><isbn>1467304573</isbn><isbn>1612847994</isbn><isbn>9781612847993</isbn><isbn>161284801X</isbn><isbn>9781612848013</isbn><isbn>9781467304573</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz81KAzEUQOGICra1e8FNXmDqvcn0JtlZxvoDBUF0XTKTOxppMzKZqfj2Cnb17Q4cIa4QFojgbqq7aqEAcUFI4Gh5IqZYktFQLo0-FXNnLBIqW1oAOhMTQIeFUkgXYprzJwBYIJqI29WBe__OsulS5pTHLLskXyLvfUrRJ_lnbLtdyPI7Dh-y7sYUOMhm7A9-GHu-FOet32WeH52Jt_v1a_VYbJ4fnqrVpogKzVA0GBqyWmkXjCttSYjsaoUNoUVvjFEKgmUm3wC2Aa0Opqw1WMtEoQU9E9f_3cjM268-7n3_sz3e61_SFEr3</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Tron, R.</creator><creator>Afsari, B.</creator><creator>Vidal, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Average consensus on Riemannian manifolds with bounded curvature</title><author>Tron, R. ; Afsari, B. ; Vidal, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-c1dc683239d79484611e9b21c6181a777220d8ee6ac01fd183d74b3088e66df03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Distributed algorithms</topic><topic>Manganese</topic><topic>Manifolds</topic><topic>Measurement</topic><topic>Protocols</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tron, R.</creatorcontrib><creatorcontrib>Afsari, B.</creatorcontrib><creatorcontrib>Vidal, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tron, R.</au><au>Afsari, B.</au><au>Vidal, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Average consensus on Riemannian manifolds with bounded curvature</atitle><btitle>2011 50th IEEE Conference on Decision and Control and European Control Conference</btitle><stitle>CDC</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>7855</spage><epage>7862</epage><pages>7855-7862</pages><issn>0191-2216</issn><isbn>9781612848006</isbn><isbn>1612848001</isbn><eisbn>1467304573</eisbn><eisbn>1612847994</eisbn><eisbn>9781612847993</eisbn><eisbn>161284801X</eisbn><eisbn>9781612848013</eisbn><eisbn>9781467304573</eisbn><abstract>Consensus algorithms are a popular choice for computing averages and other similar quantities in ad-hoc wireless networks. However, existing algorithms mostly address the case where the measurements live in a Euclidean space. In this paper, we propose distributed algorithms for averaging measurements lying in a Riemannian manifold. We first propose a direct extension of the classical average consensus algorithm and derive sufficient conditions for its convergence to a consensus configuration. Such conditions depend on the network connectivity, the geometric configuration of the measurements and the curvature of the manifold. However, the consensus configuration to which the algorithm converges may not coincide with the Fréchet mean of the measurements. We thus propose a second algorithm that performs consensus in the tangent space. This algorithm is guaranteed to converge to the Fréchet mean of the measurements, but needs to be initialized at a consensus configuration. By combining these two methods, we obtain a distributed algorithm that converges to the Fréchet mean of the measurements. We test the proposed algorithms on synthetic data sampled from manifolds such as the space of rotations, the sphere and the Grassmann manifold.</abstract><pub>IEEE</pub><doi>10.1109/CDC.2011.6160965</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, p.7855-7862
issn 0191-2216
language eng
recordid cdi_ieee_primary_6160965
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Distributed algorithms
Manganese
Manifolds
Measurement
Protocols
Vectors
title Average consensus on Riemannian manifolds with bounded curvature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A45%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Average%20consensus%20on%20Riemannian%20manifolds%20with%20bounded%20curvature&rft.btitle=2011%2050th%20IEEE%20Conference%20on%20Decision%20and%20Control%20and%20European%20Control%20Conference&rft.au=Tron,%20R.&rft.date=2011-01-01&rft.spage=7855&rft.epage=7862&rft.pages=7855-7862&rft.issn=0191-2216&rft.isbn=9781612848006&rft.isbn_list=1612848001&rft_id=info:doi/10.1109/CDC.2011.6160965&rft.eisbn=1467304573&rft.eisbn_list=1612847994&rft.eisbn_list=9781612847993&rft.eisbn_list=161284801X&rft.eisbn_list=9781612848013&rft.eisbn_list=9781467304573&rft_dat=%3Cieee_6IE%3E6160965%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i217t-c1dc683239d79484611e9b21c6181a777220d8ee6ac01fd183d74b3088e66df03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6160965&rfr_iscdi=true