Loading…

Reverberation and Absorption in an Aircraft Cabin With the Impact of Passengers

Using a similar approach to that applied in acoustics and in microwave reverberation chambers, a theory of wideband propagation in a closed environment is discussed. Here, a room environment is viewed as a lossy cavity, characterized by diffuse scattering from walls and internal obstacles. For exper...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2012-05, Vol.60 (5), p.2472-2480
Main Authors: Andersen, J. B., Kin Lien Chee, Jacob, M., Pedersen, G. F., Kurner, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using a similar approach to that applied in acoustics and in microwave reverberation chambers, a theory of wideband propagation in a closed environment is discussed. Here, a room environment is viewed as a lossy cavity, characterized by diffuse scattering from walls and internal obstacles. For experimental results, measurements from 3 to 8 GHz were performed in a 24 passenger section of an aircraft cabin. This UWB system has the transmitter at ceiling height and the receivers at armrest and headrest positions. The measurements were performed for the cabin being unoccupied and fully occupied. In the theoretical model, the closed room environment is characterized by the reverberation time and volume, and these parameters allow derivation of the the remaining parameters such as path loss and average passenger absorption. The RMS delay spread and mean excess delay are also studied. For the mean power the agreement between the theory and measurements is good to within 1-2 dB, indicating the excellent accuracy of the method, which extends to estimating body absorption in real world environments. The total absorption from the seated passengers is dominated by the few who are near the transmitter. In general, this absorbed power is relatively small, so the effect of passengers is marginal for this configuration of a cabin communication system.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2012.2189700