Loading…
Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering
Content based image retrieval is an active research issue that had been famous from 1990s till present. The main target of CBIR is to get accurate results with lower computational time. This paper discusses on the comparative method used in color histogram based on two major methods used frequently...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 286 |
container_issue | |
container_start_page | 283 |
container_title | |
container_volume | |
creator | Rasli, R. M. Muda, T. Z. T. Yusof, Y. Bakar, J. A. |
description | Content based image retrieval is an active research issue that had been famous from 1990s till present. The main target of CBIR is to get accurate results with lower computational time. This paper discusses on the comparative method used in color histogram based on two major methods used frequently in CBIR which are; normal color histogram using GLCM, and color histogram using KMeans. A set of 9960 images are used to test the accuracy and the precision of each methods. Using Euclidean distance, similarity between queried image and the candidate images are calculated. Experiment results shows that color histogram with K-Means method had high accuracy and precise compared to GLCM. Future work will be made to add more features that are famous in CBIR which are texture, color, and shape features in order to get better results. |
doi_str_mv | 10.1109/ISMS.2012.111 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6169714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6169714</ieee_id><sourcerecordid>6169714</sourcerecordid><originalsourceid>FETCH-ieee_primary_61697143</originalsourceid><addsrcrecordid>eNp9jL1OwzAYRc2fRIGMTCzfC6TYafAPW7GgrSALKXNlka_BKHGK7VTKzIsTpIqR6erq3HMJuWZ0yhhVt6uyKKcZZdlY2RG5oIKru5xzmR-TScY4TykX9IQkSkiWczGjUnJ2-sd4dk6SED4ppYwKJZWckG_dtTvjTbR7hLkzzRBsgG4LunMRXYQHE7CCVWtqhFeM3uLeNLDG9w9nv3oM8Basq8d503lY2hC72pv2HuagRxPK2FfD79_iRRdgXAXPaYHGBdBNHyL6Ub4iZ1vTBEwOeUlunh7XeplaRNzsvG2NHzaccSVYPvuf_gA9XFV-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rasli, R. M. ; Muda, T. Z. T. ; Yusof, Y. ; Bakar, J. A.</creator><creatorcontrib>Rasli, R. M. ; Muda, T. Z. T. ; Yusof, Y. ; Bakar, J. A.</creatorcontrib><description>Content based image retrieval is an active research issue that had been famous from 1990s till present. The main target of CBIR is to get accurate results with lower computational time. This paper discusses on the comparative method used in color histogram based on two major methods used frequently in CBIR which are; normal color histogram using GLCM, and color histogram using KMeans. A set of 9960 images are used to test the accuracy and the precision of each methods. Using Euclidean distance, similarity between queried image and the candidate images are calculated. Experiment results shows that color histogram with K-Means method had high accuracy and precise compared to GLCM. Future work will be made to add more features that are famous in CBIR which are texture, color, and shape features in order to get better results.</description><identifier>ISSN: 2166-0662</identifier><identifier>ISBN: 9781467308861</identifier><identifier>ISBN: 1467308862</identifier><identifier>EISSN: 2166-0670</identifier><identifier>EISBN: 0769546684</identifier><identifier>EISBN: 9780769546681</identifier><identifier>DOI: 10.1109/ISMS.2012.111</identifier><language>eng</language><publisher>IEEE</publisher><subject>CBIR ; Color ; Color Histogram ; Gray Level Cooccurrence Matrix ; Histograms ; Image color analysis ; Image retrieval ; Indexes ; K-Means Clustering ; Shape ; Testing</subject><ispartof>2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, p.283-286</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6169714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54534,54899,54911</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6169714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rasli, R. M.</creatorcontrib><creatorcontrib>Muda, T. Z. T.</creatorcontrib><creatorcontrib>Yusof, Y.</creatorcontrib><creatorcontrib>Bakar, J. A.</creatorcontrib><title>Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering</title><title>2012 Third International Conference on Intelligent Systems Modelling and Simulation</title><addtitle>isms</addtitle><description>Content based image retrieval is an active research issue that had been famous from 1990s till present. The main target of CBIR is to get accurate results with lower computational time. This paper discusses on the comparative method used in color histogram based on two major methods used frequently in CBIR which are; normal color histogram using GLCM, and color histogram using KMeans. A set of 9960 images are used to test the accuracy and the precision of each methods. Using Euclidean distance, similarity between queried image and the candidate images are calculated. Experiment results shows that color histogram with K-Means method had high accuracy and precise compared to GLCM. Future work will be made to add more features that are famous in CBIR which are texture, color, and shape features in order to get better results.</description><subject>CBIR</subject><subject>Color</subject><subject>Color Histogram</subject><subject>Gray Level Cooccurrence Matrix</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image retrieval</subject><subject>Indexes</subject><subject>K-Means Clustering</subject><subject>Shape</subject><subject>Testing</subject><issn>2166-0662</issn><issn>2166-0670</issn><isbn>9781467308861</isbn><isbn>1467308862</isbn><isbn>0769546684</isbn><isbn>9780769546681</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9jL1OwzAYRc2fRIGMTCzfC6TYafAPW7GgrSALKXNlka_BKHGK7VTKzIsTpIqR6erq3HMJuWZ0yhhVt6uyKKcZZdlY2RG5oIKru5xzmR-TScY4TykX9IQkSkiWczGjUnJ2-sd4dk6SED4ppYwKJZWckG_dtTvjTbR7hLkzzRBsgG4LunMRXYQHE7CCVWtqhFeM3uLeNLDG9w9nv3oM8Basq8d503lY2hC72pv2HuagRxPK2FfD79_iRRdgXAXPaYHGBdBNHyL6Ub4iZ1vTBEwOeUlunh7XeplaRNzsvG2NHzaccSVYPvuf_gA9XFV-</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Rasli, R. M.</creator><creator>Muda, T. Z. T.</creator><creator>Yusof, Y.</creator><creator>Bakar, J. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering</title><author>Rasli, R. M. ; Muda, T. Z. T. ; Yusof, Y. ; Bakar, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_61697143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CBIR</topic><topic>Color</topic><topic>Color Histogram</topic><topic>Gray Level Cooccurrence Matrix</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image retrieval</topic><topic>Indexes</topic><topic>K-Means Clustering</topic><topic>Shape</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Rasli, R. M.</creatorcontrib><creatorcontrib>Muda, T. Z. T.</creatorcontrib><creatorcontrib>Yusof, Y.</creatorcontrib><creatorcontrib>Bakar, J. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rasli, R. M.</au><au>Muda, T. Z. T.</au><au>Yusof, Y.</au><au>Bakar, J. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering</atitle><btitle>2012 Third International Conference on Intelligent Systems Modelling and Simulation</btitle><stitle>isms</stitle><date>2012-02</date><risdate>2012</risdate><spage>283</spage><epage>286</epage><pages>283-286</pages><issn>2166-0662</issn><eissn>2166-0670</eissn><isbn>9781467308861</isbn><isbn>1467308862</isbn><eisbn>0769546684</eisbn><eisbn>9780769546681</eisbn><abstract>Content based image retrieval is an active research issue that had been famous from 1990s till present. The main target of CBIR is to get accurate results with lower computational time. This paper discusses on the comparative method used in color histogram based on two major methods used frequently in CBIR which are; normal color histogram using GLCM, and color histogram using KMeans. A set of 9960 images are used to test the accuracy and the precision of each methods. Using Euclidean distance, similarity between queried image and the candidate images are calculated. Experiment results shows that color histogram with K-Means method had high accuracy and precise compared to GLCM. Future work will be made to add more features that are famous in CBIR which are texture, color, and shape features in order to get better results.</abstract><pub>IEEE</pub><doi>10.1109/ISMS.2012.111</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-0662 |
ispartof | 2012 Third International Conference on Intelligent Systems Modelling and Simulation, 2012, p.283-286 |
issn | 2166-0662 2166-0670 |
language | eng |
recordid | cdi_ieee_primary_6169714 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | CBIR Color Color Histogram Gray Level Cooccurrence Matrix Histograms Image color analysis Image retrieval Indexes K-Means Clustering Shape Testing |
title | Comparative Analysis of Content Based Image Retrieval Techniques Using Color Histogram: A Case Study of GLCM and K-Means Clustering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparative%20Analysis%20of%20Content%20Based%20Image%20Retrieval%20Techniques%20Using%20Color%20Histogram:%20A%20Case%20Study%20of%20GLCM%20and%20K-Means%20Clustering&rft.btitle=2012%20Third%20International%20Conference%20on%20Intelligent%20Systems%20Modelling%20and%20Simulation&rft.au=Rasli,%20R.%20M.&rft.date=2012-02&rft.spage=283&rft.epage=286&rft.pages=283-286&rft.issn=2166-0662&rft.eissn=2166-0670&rft.isbn=9781467308861&rft.isbn_list=1467308862&rft_id=info:doi/10.1109/ISMS.2012.111&rft.eisbn=0769546684&rft.eisbn_list=9780769546681&rft_dat=%3Cieee_6IE%3E6169714%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_61697143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6169714&rfr_iscdi=true |