Loading…
Application of Bayesian Belief Networks for context extraction from wireless sensors data
Networks of Wirelessly connected low power sensors have ability to closely sense activity of individual and social interest. The usefulness of Wireless Sensor Networks is increased further by deriving contextual information from it. From sensors data, context like activity, location, weather and sur...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 415 |
container_issue | |
container_start_page | 410 |
container_title | |
container_volume | |
creator | Mittal, S. Aggarwal, A. Maskara, S. L. |
description | Networks of Wirelessly connected low power sensors have ability to closely sense activity of individual and social interest. The usefulness of Wireless Sensor Networks is increased further by deriving contextual information from it. From sensors data, context like activity, location, weather and surroundings (nearby persons, devices) can be deduced. Techniques to represent & extract the context include ontology, Markov Models, decision trees, clustering and Bayesian approaches. Given incomplete and erroneous nature of sensor data, Bayesian Belief Networks (BBN) are used here to obtain features defining context. Five algorithms of BBN construction have been evaluated for comparing feature classification performance. Simple rule based matching is then applied to map the features to already defined context. The mechanism is applied here on sensors data obtained from Intel research lab at Berkeley to extract the "weather" context. Similar mechanism can be applied to other application and contexts also. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6174696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6174696</ieee_id><sourcerecordid>6174696</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-668791946761a5ef5111039f68826820862297cbc90fbc2d4aad52b400b814523</originalsourceid><addsrcrecordid>eNotjstKAzEYhSMq2NY-gZu8wMCfe7JsizcouunGVclk_kB0OhmSgdq3d1AXh7P4OB_niiytU4o5poW8JksmtRHAFJgbsmBG2MZJqe7IutZPAJgRABcL8rEZxz4FP6U80Bzp1l-wJj_QLfYJI33D6ZzLV6UxFxryMOH3ROcUH34nseQTPaeCPdZKKw41l0o7P_l7cht9X3H93ytyeHo87F6a_fvz626zb5KDqdHaGsfc_FYzrzAqxhgIF7W1XFsOVnPuTGiDg9gG3knvO8VbCdBaJhUXK_Lwp02IeBxLOvlyOWpmpHZa_AC6SE5Y</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Bayesian Belief Networks for context extraction from wireless sensors data</title><source>IEEE Xplore All Conference Series</source><creator>Mittal, S. ; Aggarwal, A. ; Maskara, S. L.</creator><creatorcontrib>Mittal, S. ; Aggarwal, A. ; Maskara, S. L.</creatorcontrib><description>Networks of Wirelessly connected low power sensors have ability to closely sense activity of individual and social interest. The usefulness of Wireless Sensor Networks is increased further by deriving contextual information from it. From sensors data, context like activity, location, weather and surroundings (nearby persons, devices) can be deduced. Techniques to represent & extract the context include ontology, Markov Models, decision trees, clustering and Bayesian approaches. Given incomplete and erroneous nature of sensor data, Bayesian Belief Networks (BBN) are used here to obtain features defining context. Five algorithms of BBN construction have been evaluated for comparing feature classification performance. Simple rule based matching is then applied to map the features to already defined context. The mechanism is applied here on sensors data obtained from Intel research lab at Berkeley to extract the "weather" context. Similar mechanism can be applied to other application and contexts also.</description><identifier>ISSN: 1738-9445</identifier><identifier>ISBN: 1467301507</identifier><identifier>ISBN: 9781467301503</identifier><identifier>EISBN: 8955191634</identifier><identifier>EISBN: 9788955191622</identifier><identifier>EISBN: 9788955191639</identifier><identifier>EISBN: 8955191626</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bayesian Belief Networks ; Bayesian methods ; Classification algorithms ; Context ; Context Extraction ; Humidity ; Sensor data classification ; Sensors ; Wireless sensor networks</subject><ispartof>2012 14th International Conference on Advanced Communication Technology (ICACT), 2012, p.410-415</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6174696$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6174696$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mittal, S.</creatorcontrib><creatorcontrib>Aggarwal, A.</creatorcontrib><creatorcontrib>Maskara, S. L.</creatorcontrib><title>Application of Bayesian Belief Networks for context extraction from wireless sensors data</title><title>2012 14th International Conference on Advanced Communication Technology (ICACT)</title><addtitle>ICACT</addtitle><description>Networks of Wirelessly connected low power sensors have ability to closely sense activity of individual and social interest. The usefulness of Wireless Sensor Networks is increased further by deriving contextual information from it. From sensors data, context like activity, location, weather and surroundings (nearby persons, devices) can be deduced. Techniques to represent & extract the context include ontology, Markov Models, decision trees, clustering and Bayesian approaches. Given incomplete and erroneous nature of sensor data, Bayesian Belief Networks (BBN) are used here to obtain features defining context. Five algorithms of BBN construction have been evaluated for comparing feature classification performance. Simple rule based matching is then applied to map the features to already defined context. The mechanism is applied here on sensors data obtained from Intel research lab at Berkeley to extract the "weather" context. Similar mechanism can be applied to other application and contexts also.</description><subject>Accuracy</subject><subject>Bayesian Belief Networks</subject><subject>Bayesian methods</subject><subject>Classification algorithms</subject><subject>Context</subject><subject>Context Extraction</subject><subject>Humidity</subject><subject>Sensor data classification</subject><subject>Sensors</subject><subject>Wireless sensor networks</subject><issn>1738-9445</issn><isbn>1467301507</isbn><isbn>9781467301503</isbn><isbn>8955191634</isbn><isbn>9788955191622</isbn><isbn>9788955191639</isbn><isbn>8955191626</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKAzEYhSMq2NY-gZu8wMCfe7JsizcouunGVclk_kB0OhmSgdq3d1AXh7P4OB_niiytU4o5poW8JksmtRHAFJgbsmBG2MZJqe7IutZPAJgRABcL8rEZxz4FP6U80Bzp1l-wJj_QLfYJI33D6ZzLV6UxFxryMOH3ROcUH34nseQTPaeCPdZKKw41l0o7P_l7cht9X3H93ytyeHo87F6a_fvz626zb5KDqdHaGsfc_FYzrzAqxhgIF7W1XFsOVnPuTGiDg9gG3knvO8VbCdBaJhUXK_Lwp02IeBxLOvlyOWpmpHZa_AC6SE5Y</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Mittal, S.</creator><creator>Aggarwal, A.</creator><creator>Maskara, S. L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201202</creationdate><title>Application of Bayesian Belief Networks for context extraction from wireless sensors data</title><author>Mittal, S. ; Aggarwal, A. ; Maskara, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-668791946761a5ef5111039f68826820862297cbc90fbc2d4aad52b400b814523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Bayesian Belief Networks</topic><topic>Bayesian methods</topic><topic>Classification algorithms</topic><topic>Context</topic><topic>Context Extraction</topic><topic>Humidity</topic><topic>Sensor data classification</topic><topic>Sensors</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mittal, S.</creatorcontrib><creatorcontrib>Aggarwal, A.</creatorcontrib><creatorcontrib>Maskara, S. L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mittal, S.</au><au>Aggarwal, A.</au><au>Maskara, S. L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Bayesian Belief Networks for context extraction from wireless sensors data</atitle><btitle>2012 14th International Conference on Advanced Communication Technology (ICACT)</btitle><stitle>ICACT</stitle><date>2012-02</date><risdate>2012</risdate><spage>410</spage><epage>415</epage><pages>410-415</pages><issn>1738-9445</issn><isbn>1467301507</isbn><isbn>9781467301503</isbn><eisbn>8955191634</eisbn><eisbn>9788955191622</eisbn><eisbn>9788955191639</eisbn><eisbn>8955191626</eisbn><abstract>Networks of Wirelessly connected low power sensors have ability to closely sense activity of individual and social interest. The usefulness of Wireless Sensor Networks is increased further by deriving contextual information from it. From sensors data, context like activity, location, weather and surroundings (nearby persons, devices) can be deduced. Techniques to represent & extract the context include ontology, Markov Models, decision trees, clustering and Bayesian approaches. Given incomplete and erroneous nature of sensor data, Bayesian Belief Networks (BBN) are used here to obtain features defining context. Five algorithms of BBN construction have been evaluated for comparing feature classification performance. Simple rule based matching is then applied to map the features to already defined context. The mechanism is applied here on sensors data obtained from Intel research lab at Berkeley to extract the "weather" context. Similar mechanism can be applied to other application and contexts also.</abstract><pub>IEEE</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1738-9445 |
ispartof | 2012 14th International Conference on Advanced Communication Technology (ICACT), 2012, p.410-415 |
issn | 1738-9445 |
language | eng |
recordid | cdi_ieee_primary_6174696 |
source | IEEE Xplore All Conference Series |
subjects | Accuracy Bayesian Belief Networks Bayesian methods Classification algorithms Context Context Extraction Humidity Sensor data classification Sensors Wireless sensor networks |
title | Application of Bayesian Belief Networks for context extraction from wireless sensors data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Bayesian%20Belief%20Networks%20for%20context%20extraction%20from%20wireless%20sensors%20data&rft.btitle=2012%2014th%20International%20Conference%20on%20Advanced%20Communication%20Technology%20(ICACT)&rft.au=Mittal,%20S.&rft.date=2012-02&rft.spage=410&rft.epage=415&rft.pages=410-415&rft.issn=1738-9445&rft.isbn=1467301507&rft.isbn_list=9781467301503&rft_id=info:doi/&rft.eisbn=8955191634&rft.eisbn_list=9788955191622&rft.eisbn_list=9788955191639&rft.eisbn_list=8955191626&rft_dat=%3Cieee_CHZPO%3E6174696%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-668791946761a5ef5111039f68826820862297cbc90fbc2d4aad52b400b814523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6174696&rfr_iscdi=true |