Loading…
A methodology for modeling the distributions of medical images and their stochastic properties
The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model...
Saved in:
Published in: | IEEE transactions on medical imaging 1990-12, Vol.9 (4), p.376-383 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3 |
container_end_page | 383 |
container_issue | 4 |
container_start_page | 376 |
container_title | IEEE transactions on medical imaging |
container_volume | 9 |
creator | Zhang, Y.-Q. Loew, M.H. Pickholtz, R.L. |
description | The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.< > |
doi_str_mv | 10.1109/42.61753 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_61753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>61753</ieee_id><sourcerecordid>25750166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</originalsourceid><addsrcrecordid>eNqF0T1v2zAQBmAiaJG4boCsWQIOQdpFCY8iKXE0jPQDCJAlBTpVoKiTzUAWXZIa_O9Dx0aytROHe3BHvC8hF8BuAZi-E_xWQSXLEzIDKeuCS_H7A5kxXtUFY4qfkU8xPjMGQjJ9Ss6g5jzP5Iz8WdANprXv_OBXO9r7QDe-w8GNK5rWSDsXU3DtlJwfI_V91p2zZqBuY1YYqRm7vXOBxuTt2sTkLN0Gv8WQHMbP5GNvhojnx3dOfn27f1r-KB4ev_9cLh4KW9Y6FaXoFGrFK2s1mhZ63Vqse1aXdVlq0zJAw0EIDVID8q4FRKa5qhTjque2nJMvh7359N8JY2o2LlocBjOin2JTlYKLimuZ5c0_Ja9FTk_D_6GsJAOlMvx6gDb4GAP2zTbkdMKuAdbs62kEb17ryfTquHNqc5Dv8NhHBtdHYGJOuQ9mtC6-OSFAV2L_t8sDc4j4Nj3ceAFMEJ7d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25750166</pqid></control><display><type>article</type><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</creator><creatorcontrib>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</creatorcontrib><description>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.< ></description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.61753</identifier><identifier>PMID: 18222785</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Biological and medical sciences ; Biomedical imaging ; Data compression ; Entropy ; Gaussian distribution ; Histograms ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Physics ; Probability density function ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiography ; Stochastic processes ; Testing</subject><ispartof>IEEE transactions on medical imaging, 1990-12, Vol.9 (4), p.376-383</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</citedby><cites>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/61753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4419741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18222785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y.-Q.</creatorcontrib><creatorcontrib>Loew, M.H.</creatorcontrib><creatorcontrib>Pickholtz, R.L.</creatorcontrib><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.< ></description><subject>Biological and medical sciences</subject><subject>Biomedical imaging</subject><subject>Data compression</subject><subject>Entropy</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Physics</subject><subject>Probability density function</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiography</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0T1v2zAQBmAiaJG4boCsWQIOQdpFCY8iKXE0jPQDCJAlBTpVoKiTzUAWXZIa_O9Dx0aytROHe3BHvC8hF8BuAZi-E_xWQSXLEzIDKeuCS_H7A5kxXtUFY4qfkU8xPjMGQjJ9Ss6g5jzP5Iz8WdANprXv_OBXO9r7QDe-w8GNK5rWSDsXU3DtlJwfI_V91p2zZqBuY1YYqRm7vXOBxuTt2sTkLN0Gv8WQHMbP5GNvhojnx3dOfn27f1r-KB4ev_9cLh4KW9Y6FaXoFGrFK2s1mhZ63Vqse1aXdVlq0zJAw0EIDVID8q4FRKa5qhTjque2nJMvh7359N8JY2o2LlocBjOin2JTlYKLimuZ5c0_Ja9FTk_D_6GsJAOlMvx6gDb4GAP2zTbkdMKuAdbs62kEb17ryfTquHNqc5Dv8NhHBtdHYGJOuQ9mtC6-OSFAV2L_t8sDc4j4Nj3ceAFMEJ7d</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Zhang, Y.-Q.</creator><creator>Loew, M.H.</creator><creator>Pickholtz, R.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>7X8</scope></search><sort><creationdate>19901201</creationdate><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><author>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical imaging</topic><topic>Data compression</topic><topic>Entropy</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Physics</topic><topic>Probability density function</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiography</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.-Q.</creatorcontrib><creatorcontrib>Loew, M.H.</creatorcontrib><creatorcontrib>Pickholtz, R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.-Q.</au><au>Loew, M.H.</au><au>Pickholtz, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for modeling the distributions of medical images and their stochastic properties</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1990-12-01</date><risdate>1990</risdate><volume>9</volume><issue>4</issue><spage>376</spage><epage>383</epage><pages>376-383</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18222785</pmid><doi>10.1109/42.61753</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 1990-12, Vol.9 (4), p.376-383 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_61753 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Biological and medical sciences Biomedical imaging Data compression Entropy Gaussian distribution Histograms Investigative techniques, diagnostic techniques (general aspects) Medical sciences Physics Probability density function Radiodiagnosis. Nmr imagery. Nmr spectrometry Radiography Stochastic processes Testing |
title | A methodology for modeling the distributions of medical images and their stochastic properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20modeling%20the%20distributions%20of%20medical%20images%20and%20their%20stochastic%20properties&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Y.-Q.&rft.date=1990-12-01&rft.volume=9&rft.issue=4&rft.spage=376&rft.epage=383&rft.pages=376-383&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.61753&rft_dat=%3Cproquest_ieee_%3E25750166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25750166&rft_id=info:pmid/18222785&rft_ieee_id=61753&rfr_iscdi=true |