Loading…

A methodology for modeling the distributions of medical images and their stochastic properties

The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 1990-12, Vol.9 (4), p.376-383
Main Authors: Zhang, Y.-Q., Loew, M.H., Pickholtz, R.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3
cites cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3
container_end_page 383
container_issue 4
container_start_page 376
container_title IEEE transactions on medical imaging
container_volume 9
creator Zhang, Y.-Q.
Loew, M.H.
Pickholtz, R.L.
description The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.< >
doi_str_mv 10.1109/42.61753
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_61753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>61753</ieee_id><sourcerecordid>25750166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</originalsourceid><addsrcrecordid>eNqF0T1v2zAQBmAiaJG4boCsWQIOQdpFCY8iKXE0jPQDCJAlBTpVoKiTzUAWXZIa_O9Dx0aytROHe3BHvC8hF8BuAZi-E_xWQSXLEzIDKeuCS_H7A5kxXtUFY4qfkU8xPjMGQjJ9Ss6g5jzP5Iz8WdANprXv_OBXO9r7QDe-w8GNK5rWSDsXU3DtlJwfI_V91p2zZqBuY1YYqRm7vXOBxuTt2sTkLN0Gv8WQHMbP5GNvhojnx3dOfn27f1r-KB4ev_9cLh4KW9Y6FaXoFGrFK2s1mhZ63Vqse1aXdVlq0zJAw0EIDVID8q4FRKa5qhTjque2nJMvh7359N8JY2o2LlocBjOin2JTlYKLimuZ5c0_Ja9FTk_D_6GsJAOlMvx6gDb4GAP2zTbkdMKuAdbs62kEb17ryfTquHNqc5Dv8NhHBtdHYGJOuQ9mtC6-OSFAV2L_t8sDc4j4Nj3ceAFMEJ7d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25750166</pqid></control><display><type>article</type><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</creator><creatorcontrib>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</creatorcontrib><description>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.&lt; &gt;</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.61753</identifier><identifier>PMID: 18222785</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Biological and medical sciences ; Biomedical imaging ; Data compression ; Entropy ; Gaussian distribution ; Histograms ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Physics ; Probability density function ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Radiography ; Stochastic processes ; Testing</subject><ispartof>IEEE transactions on medical imaging, 1990-12, Vol.9 (4), p.376-383</ispartof><rights>1993 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</citedby><cites>FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/61753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4419741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18222785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Y.-Q.</creatorcontrib><creatorcontrib>Loew, M.H.</creatorcontrib><creatorcontrib>Pickholtz, R.L.</creatorcontrib><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.&lt; &gt;</description><subject>Biological and medical sciences</subject><subject>Biomedical imaging</subject><subject>Data compression</subject><subject>Entropy</subject><subject>Gaussian distribution</subject><subject>Histograms</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Physics</subject><subject>Probability density function</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Radiography</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0T1v2zAQBmAiaJG4boCsWQIOQdpFCY8iKXE0jPQDCJAlBTpVoKiTzUAWXZIa_O9Dx0aytROHe3BHvC8hF8BuAZi-E_xWQSXLEzIDKeuCS_H7A5kxXtUFY4qfkU8xPjMGQjJ9Ss6g5jzP5Iz8WdANprXv_OBXO9r7QDe-w8GNK5rWSDsXU3DtlJwfI_V91p2zZqBuY1YYqRm7vXOBxuTt2sTkLN0Gv8WQHMbP5GNvhojnx3dOfn27f1r-KB4ev_9cLh4KW9Y6FaXoFGrFK2s1mhZ63Vqse1aXdVlq0zJAw0EIDVID8q4FRKa5qhTjque2nJMvh7359N8JY2o2LlocBjOin2JTlYKLimuZ5c0_Ja9FTk_D_6GsJAOlMvx6gDb4GAP2zTbkdMKuAdbs62kEb17ryfTquHNqc5Dv8NhHBtdHYGJOuQ9mtC6-OSFAV2L_t8sDc4j4Nj3ceAFMEJ7d</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Zhang, Y.-Q.</creator><creator>Loew, M.H.</creator><creator>Pickholtz, R.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>7X8</scope></search><sort><creationdate>19901201</creationdate><title>A methodology for modeling the distributions of medical images and their stochastic properties</title><author>Zhang, Y.-Q. ; Loew, M.H. ; Pickholtz, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Biological and medical sciences</topic><topic>Biomedical imaging</topic><topic>Data compression</topic><topic>Entropy</topic><topic>Gaussian distribution</topic><topic>Histograms</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Physics</topic><topic>Probability density function</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Radiography</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Y.-Q.</creatorcontrib><creatorcontrib>Loew, M.H.</creatorcontrib><creatorcontrib>Pickholtz, R.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Y.-Q.</au><au>Loew, M.H.</au><au>Pickholtz, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for modeling the distributions of medical images and their stochastic properties</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1990-12-01</date><risdate>1990</risdate><volume>9</volume><issue>4</issue><spage>376</spage><epage>383</epage><pages>376-383</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The probabilistic distribution properties of a set of medical images are studied. It is shown that the generalized Gaussian function provides a good approximation to the distribution of AP chest radiographs. Based on this result and a goodness-of-fit test, a generalized Gaussian autoregressive model (GGAR) is proposed. Its properties and limitations are also discussed. It is expected that the GGAR model will be useful in describing the stochastic characteristics of some classes of medical images and in image data compression and other applications.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18222785</pmid><doi>10.1109/42.61753</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1990-12, Vol.9 (4), p.376-383
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_61753
source IEEE Electronic Library (IEL) Journals
subjects Biological and medical sciences
Biomedical imaging
Data compression
Entropy
Gaussian distribution
Histograms
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Physics
Probability density function
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiography
Stochastic processes
Testing
title A methodology for modeling the distributions of medical images and their stochastic properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T21%3A19%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20modeling%20the%20distributions%20of%20medical%20images%20and%20their%20stochastic%20properties&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Zhang,%20Y.-Q.&rft.date=1990-12-01&rft.volume=9&rft.issue=4&rft.spage=376&rft.epage=383&rft.pages=376-383&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.61753&rft_dat=%3Cproquest_ieee_%3E25750166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-34d6e9627cc9eab1f9bce8f0838339ab01ea214491591e2db1ee092676026f2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25750166&rft_id=info:pmid/18222785&rft_ieee_id=61753&rfr_iscdi=true